Section 9.8 Job Control 277

~init or inetd

gettyor
telnetd

exec, after setsid, then
establishing controlling terminal

login

exec

login shell

background
process group(s)

foreground
process group

tcsetpgrp to set process group
for controlling terminal

terminal |
driver N
user at a
terminal

session

Figure 9.8 Summary of job control features with foreground and background jobs, and terminal driver

group to the actual terminal. The dashed line corresponding to the SIGTTOU signal
means that whether the output from a process in the background process group appears
on the terminal is an option.

Is job control necessary or desirable? Job control was originally designed and
implemented before windowing terminals were widespread. Some people claim that a
well-designed windowing system removes any need for job control. Some complain

278

Process Relationships Chapter 9

9.9

that the implementation of job control—requiring support from the kernel, the terminal
driver, the shell, and some applications—is a hack. Some use job control with a
windowing system, claiming a need for both. Regardless of your opinion, job control is
a required feature of POSIX.1.

Shell Execution of Programs

Let’s examine how the shells execute programs and how this relates to the concepts of
process groups, controlling terminals, and sessions. To do this, we'll use the ps
command again.

First, we'll use a shell that doesn’t support job control—the classic Bourne shell
running on Solaris. If we execute

ps -o pid,ppid,pgid, sid, comm
the output is

PID PPID PGID SID COMMAND
949 947 949 949 sh
1774 949 949 949 ps

The parent of the ps command is the shell, which we would expect. Both the shell and
the ps command are in the same session and foreground process group (949). We say
that 949 is the foreground process group because that is what you get when you execute
a command with a shell that doesn’t support job control.

Some platforms support an option to have the ps(1) command print the process group ID
associated with the session’s controlling terminal. This value would be shown under the
TPGID column. Unfortunately, the output of the ps command often differs among versions of
the UNIX System. For example, Solaris 9 doesn’t support this option. Under FreeBSD 5.2.1
and Mac OS X 10.3, the command

ps -o pid,ppid,pgid, sess, tpgid, command
and under Linux 2.4.22, the command

ps -o pid,ppid, pgrp, session, tpgid, comm
print exactly the information we want.
Note that it is a misnomer to associate a process with a terminal process group ID (the TPGID
column). A process does not have a terminal process control group. A process belongs to a
process group, and the process group belongs to a session. The session may or may not have a
controlling terminal. If the session does have a controlling terminal, then the terminal device
knows the process group ID of the foreground process. This value can be set in the terminal
driver with the tcsetpgrp function, as we show in Figure 9.8. The foreground process group
ID is an attribute of the terminal, not the process. This value from the terminal device driver is
what ps prints as the TPGID. If it finds that the session doesn’t have a controlling terminal, ps
prints -1.

If we execute the command in the background,
ps -o pid,ppid,pgid,sid,comm &

the only value that changes is the process ID of the command:

Section 9.9 Shell Execution of Programs 279

PID PPID PGID SID COMMAND
949 947 949 949 sh
1812 949 949 949 ps

This shell doesn’t know about job control, so the background job is not put into its own
process group and the controlling terminal isn’t taken away from the background job.
Let’s now look at how the Bourne shell handles a pipeline. When we execute

ps -o pid,ppid,pgid,sid,comm | catl
the output is

PID PPID PGID SID COMMAND
949 947 949 949 sh
1823 949 949 949 catl
1824 1823 949 949 ps

(The program cat1 is just a copy of the standard cat program, with a different name.
We have another copy of cat with the name cat2, which we'll use later in this section.
When we have two copies of cat in a pipeline, the different names let us differentiate
between the two programs.) Note that the last process in the pipeline is the child of the
shell and that the first process in the pipeline is a child of the last process. It appears
that the shell forks a copy of itself and that this copy then forks to make each of the
previous processes in the pipeline.
If we execute the pipeline in the background,

ps -o pid,ppid,pgid,sid, comm | catl &

only the process IDs change. Since the shell doesn’t handle job control, the process
group ID of the background processes remains 949, as does the process group ID of the
session.

What happens in this case if a background process tries to read from its controlling
terminal? For example, suppose that we execute

cat > temp.foo &

With job control, this is handled by placing the background job into a background
process group, which causes the signal SIGTTIN to be generated if the background job
tries to read from the controlling terminal. The way this is handled without job control
is that the shell automatically redirects the standard input of a background process to
/dev/null, if the process doesn’t redirect standard input itself. A read from
/dev/null generates an end of file. This means that our background cat process
immediately reads an end of file and terminates normally. '

The previous paragraph adequately handles the case of a background process
accessing the controlling terminal through its standard input, but what happens if a
background process specifically opens /dev/tty and reads from the controlling
terminal? The answer is “it depends,” but it's probably not what we want. For
example,

crypt < salaries | lpr &

is such a pipeline. We run it in the background, but the crypt program opens
/dev/tty, changes the terminal characteristics (to disable echoing), reads from the

280 Process Relationships Chapter 9

device, and resets the terminal characteristics. When we execute this background
pipeline, the prompt Password: from crypt is printed on the terminal, but what we
enter (the encryption password) is read by the shell, which tries to execute a command
of that name. The next line we enter to the shell is taken as the password, and the file is
not encrypted correctly, sending junk to the printer. Here we have two processes trying
to read from the same device at the same time, and the result depends on the system.
Job control, as we described earlier, handles this multiplexing of a single terminal
between multiple processes in a better fashion.

Returning to our Bourne shell example, if we execute three processes in the
pipeline, we can examine the process control used by this shell:

ps -o pid,ppid,pgid,sid,comm | catl | cat2
generates the following output

PID PPID PGID SID COMMAND
949 947 949 949 sh
1988 949 949 949 cat2
1989 1988 949 949 ps
1990 1988 949 949 catl

Don’t be alarmed if the output on your system doesn’t show the proper command names.
Sometimes you might get results such as

PID PPID PGID SID COMMAND
949 947 949 949 sh

1831 949 949 949 sh

1832 1831 949 549 ps

1833 1831 949 949 sh

What's happening here is that the ps process is racing with the shell, which is forking and
executing the cat commands. In this case, the shell hasn't yet completed the call to exec
when ps has obtained the list of processes to print.

Again, the last process in the pipeline is the child of the shell, and all previous processes
in the pipeline are children of the last process. Figure 9.9 shows what is happening.
Since the last process in the pipeline is the child of the login shell, the shell is notified
when that process (cat 2) terminates.

Now let’s examine the same examples using a job-control shell running on Linux.
This shows the way these shells handle background jobs. We'll use the Bourne-again
shell in this example; the results with other job-control shells are almost identical.

ps -o pid,ppid,pgrp, session, tpgid, comm
gives us

PID PPID PGRP SESS TPGID COMMAND
2837 2818 2837 2837 5796 bash
5796 2837 5796 2837 5796 ps

(Starting with this example, we show the foreground process group in a bolder
font.) We immediately have a difference from our Bourne shell example. The
Bourne-again shell places the foreground job (ps) into its own process group (5796).
The ps command is the process group leader and the only process in this process group.

Section 9.9 Shell Execution of Programs

281

sh exec ps
6*'/’ (1989) T (1989)
9%
7’ :
7/ .
sh fork sh LT
_____ :pipel
(949) ™ (1988) :pipeiine
N (‘ .
. \?{){. 1
L, sh exec catl
Y (1990) (1990)
”,g; - exec —
%'.‘?zo
D
N o
My \ g

(1988) r

Figure 9.9 Processes in the pipeline ps | catl | cat2 when invoked by Bourne shell

Furthermore, this process group is the foreground process group, since it has the
controlling terminal. Our login shell is a background process group while the ps
command executes. Note, however, that both process groups, 2837 and 5796, are
members of the same session. Indeed, we'll see that the session never changes through

our examples in this section.
Executing this process in the background,

ps -0 pid,ppid,pgrp,session,tpgid,comm &
gives us

PID PPID PGRP SESS TPGID COMMAND
2837 2818 2837 2837 2837 bash
5797 2837 5797 2837 2837 ps

Again, the ps command is placed into its own process group, but this time the process
group (5797) is no longer the foreground process group. It is a background process
group. The TPGID of 2837 indicates that the foreground process group is our login

shell.
Executing two processes in a pipeline, as in

ps -0 pid,ppid,pgrp,session,tpgid,comm | cat1
gives us

PID PPID PGRP SESS TPGID COMMAND
2837 2818 2837 2837 5799 bash
5799 2837 5799 2837 5799 ps
5800 2837 5799 2837 5799 catl

Both processes, ps and cat1, are placed into a new process group (5799), and this is the
foreground process group. We can also see another difference between this example
and the similar Bourne shell example. The Bourne shell created the last process in the

282 Process Relationships Chapter 9
pipeline first, and this final process was the parent of the first process. Here, the
Bourne-again shell is the parent of both processes. If we execute this pipeline in the
background,

ps -o pid,ppid,pgrp, session, tpgid,comm | catl &
the results are similar, but now ps and cat1 are placed in the same background process
group:
PID PPID PGRP SESS TPGID COMMAND

2837 2818 2837 2837 2837 bash

5801 2837 5801 2837 2837 ps

5802 2837 5801 2837 2837 catl
Note that the order in which a shell creates processes can differ depending on the
particular shell in use.

9.10 Orphaned Process Groups
We've mentioned that a process whose parent terminates is called an orphan and is
inherited by the init process. We now lnok at entire process groups that can be
orphaned and how POSIX.1 handles this situation.

Example

Consider a process that forks a child and then terminates. Although this is nothing
abnormal (it happens all the time), what happens if the child is stopped (using job
control) when the parent terminates? How will the child ever be continued, and does
the child know that it has been orphaned? Figure 9.10 shows this situation: the parent
process has forked a child that stops, and the parent is about to exit.

(—process group 2837 I
P h
|
|
Lo _4l__._4d

|
fork/exec

PR e -
parent

‘ (PID 6099)

|

L
L process group 6099

login shell]
(PID 2837) ’

|

session

N~ &
o]
\\1\.&

-
child
(PID 6100)

|
|
!
|
|
|
|
|
|

Figure 9.10 Example of a process group about to be orphaned

Section 9.10 Orphaned Process Groups 283

The program that creates this situation is shown in Figure 9.11. This program has some
new features. Here, we are assuming a job-control shell. Recall from the previous
section that the shell places the foreground process into its own process group (6099 in
this example) and that the shell stays in its own process group (2837). The child inherits
the process group of its parent (6099). After the fork,

e The parent sleeps for 5 seconds. This is our (imperfect) way of letting the child
execute before the parent terminates.

e The child establishes a signal handler for the hang-up signal (SIGHUP). This is
so we can see whether SIGHUP is sent to the child. (We discuss signal handlers
in Chapter 10.)

e The child sends itself the stop signal (SIGTSTP) with the ki1l function. This
stops the child, similar to our stopping a foreground job with our terminal’s
suspend character (Control-Z).

e When the parent terminates, the child is orphaned, so the child’s parent process
1D becomes 1, the init process 1D.

o At this point, the child is now a member of an orphaned process group. The
POSIX.1 definition of an orphaned process group is one in which the parent of
every member is either itself a member of the group or is not a member of the
group’s session. Another way of wording this is that the process group is not
orphaned as long as a process in the group has a parent in a different process
group but in the same session. If the process group is not orphaned, there is a
chance that one of those parents in a different process group but in the same
session will restart a stopped process in the process group that is not orphaned.
Here, the parent of every process in the group (e.g., process 1 is the parent of
process 6100) belongs to another session.

e Since the process group is orphaned when the parent terminates, POSIX.1
requires that every process in the newly orphaned process group that is stopped
(as our child is) be sent the hang-up signal (s1GHUP) followed by the continue
signal (SIGCONT).

o This causes the child to be continued, after processing the hang-up signal. The
default action for the hang-up signal is to terminate the process, so we have to
provide a signal handler to catch the signal. We therefore expect the printf in
the sig_hup function to appear before the print £ in the pr_ids function.

Here is the output from the program shown in Figure 9.11:

$./a.out

parent: pid = 6099, ppid = 2837, pgrp = 6099, tpgrp = 6099
child: pid = 6100, ppid = 6099, pgrp = 6099, tpgrp = 6099
$ SIGHUP received, pid = 6100

child: pid = 6100, ppid = 1, pgrp = 6099, tpgrp = 2837
read error from controlling TTY, errno = 5

Note that our shell prompt appears with the output from the child, since two
processes—our login shell and the child—are writing to the terminal. As we expect,
the parent process ID of the child has become 1.

284

Process Relationships

Chapter 9

#include "apue.h"
#include <errno.hs>

static void
sig_hup(int signo)

printf ("SIGHUP received, pid = %d\n", getpid());

}

static void
pr_ids (char *name)

{

printf ("%$s: pid = %4, ppid =

%d, pgrp = %d, tpgrp = %d\n",

name, getpid(), getppid(), getpgrp(), tcgetpgrp (STDIN FILENO));

fflush(stdout) ;

}

int

main(void)

{
char c;
pid_t pid;

pr_ids("parent") ;
if ((pid = fork()) < 0) {

err_sys("fork error");
} else if (pid > 0) {

/* parent */

sleep(5) ; /* sleep to let child stop itself */
exit (0); /* then parent exits */
} else { /* child */

pr_ids("child");
signal (SIGHUP, sig hup);
kill (getpid(), SIGTSTP);
pr_ids("child") ;

/* establish signal handler */
/* stop ourself */

/* prints only if we’re continued */

if (read(STDIN_FILENO, &, 1) != 1)
printf("read error from controlling TTY, errno = %d\n",

errno) ;
exit (0);

Figure 9.11 Creating an orphaned process group

After calling pr_ids in the child, the program tries to read from standard input.
As we saw earlier in this chapter, when a background process group tries to read from
its controlling terminal, SIGTTIN is generated for the background process group. But
here we have an orphaned process group; if the kernel were to stop it with this signal,
the processes in the process group would probably never be continued. POSIX.1
specifies that the read is to return an error with errno set to EIO (whose value is 5 on_

this system) in this situation.

Section 9.11 FreeBSD Implementation 285

9.11

Finally, note that our child was placed in a background process group when the
parent terminated, since the parent was executed as a foreground job by the shell. O

We'll see another example of orphaned process groups in Section 19.5 with the pty
program.

FreeBSD Implementation

Having talked about the various attributes of a process, process group, session, and
controlling terminal, it’s worth looking at how all this can be implemented. We'll look
briefly at the implementation used by FreeBSD. Some details of the SVR4
implementation of these features can be found in Williams [1989]. Figure 9.12 shows the
various data structures used by FreeBSD.

session structure
tty structure s_count
s_leader
s_ttyvp
t_session [T s_ttyp v-node structure
1
t_pgrp forg, . s_sid
. Proc grollnd
t termios €sg
- 8oy, N porp structure
t_winsize /
actual
- i-node
pg_id for device
pg_session —

linked list of pg.members
process group members =

proc structure proc structure proc structure

p_pglist - p_pglist p_pglist

p_pid p_pid p_pid

p_pptr \ p_pptr p_pptr

|
p_pgrp ‘ p_p3rp p_parp

Figure 9.12 FreeBSD implementation of sessions and process groups

286 Process Relationships Chapter 9

Let’s look at all the fields that we've labeled, starting with the session structure.
One of these structures is allocated for each session (e.g., each time setsid is called).

* s_count is the number of process groups in the session. When this counter is
decremented to 0, the structure can be freed.

* s_leaderis a pointer to the proc structure of the session leader.
®* s_ttyvpisa pointer to the vnode structure of the controlling terminal.
* s_ttyp is a pointer to the tty structure of the controlling terminal.

* s_sidis the session ID. Recall that the concept of a session ID is not part of the
Single UNIX Specification.

When setsid is called, a new session structure is allocated within the kernel.
Now s_count issetto 1, s leader is set to point to the proc structure of the calling
process, s_sid is set to the process ID, and s_ttyvp and s_ttyp are set to null
pointers, since the new session doesn’t have a controlling terminal.

Let’s move to the tty structure. The kernel contains one of these structures for
each terminal device and each pseudo-terminal device. (We talk more about pseudo
terminals in Chapter 19.)

* t_session points to the session structure that has this terminal as its
controlling terminal. (Note that the tty structure points to the session
structure and vice versa.) This pointer is used by the terminal to send a hang-up
signal to the session leader if the terminal loses carrier (Figure 9.7).

* t_pgrp points to the pgrp structure of the foreground process group. This field
is used by the terminal driver to send signals to the foreground process group.
The three signals generated by entering special characters (interrupt, quit, and
suspend) are sent to the foreground process group.

* t_termios is a structure containing all the special characters and related
information for this terminal, such as baud rate, is echo on or off, and so on.
We'll return to this structure in Chapter 18.

* t_winsize isawinsize structure that contains the current size of the terminal
window. When the size of the terminal window changes, the STGWINCH signal
is sent to the foreground process group. We show how to set and fetch the
terminal’s current window size in Section 18.12.

Note that to find the foreground process group of a particular session, the kernel has to
start with the session structure, follow s_ttyp to get to the controlling terminal’s tty
structure, and then follow t_pgrp to get to the foreground process group’s pgrp
structure. The pgrp structure contains the information for a particular process group.

* pg_idis the process group ID.

* pg_session points to the session structure for the session to which this
process group belongs.

* pg_members is a pointer to the list of proc structures that are members of this
process group. The p_pglist structure in that proc structure is a

Chapter 9 Exercises 287

9.12

doubly-linked list entry that points to both the next process and the previous
process in the group, and so on, until a null pointer is encountered in the proc
structure of the last process in the group.

The proc structure contains all the information for a single process.

¢ p pid contains the process ID.
e p pptr is a pointer to the proc structure of the parent process.

* p_pgrp points to the pgrp structure of the process group to which this process
belongs.

e p pglist is a structure containing pointers to the next and previous processes
in the process group, as we mentioned earlier.

Finally, we have the vnode structure. This structure is allocated when the
controlling terminal device is opened. All references to /dev/tty in a process go
through this vnode structure. We show the actual i-node as being part of the v-node.

Summary

This chapter has described the relationships between groups of processes: sessions,
which are made up of process groups. Job control is a feature supported by most UNIX
systems today, and we’ve described how it’s implemented by a shell that supports job
control. The controlling terminal for a process, /dev/tty, is also involved in these
process relationships.

We've made numerous references to the signals that are used in all these process
relationships. The next chapter continues the discussion of signals, looking at all the
UNIX System signals in detail.

Exercises

91 Refer back to our discussion of the utmp and wtmp files in Section 6.8. Why are the logout
records written by the init process? Is this handled the same way for a network login?

9.2 Write a small program that calls fork and has the child create a new session. Verify that
the child becomes a process group leader and that the child no longer has a controlling
terminal.

10.1

10.2

10

Signails

Introduction

Signals are software interrupts. Most nontrivial application programs need to deal with
signals. Signals provide a way of handling asynchronous events: a user at a terminal
typing the interrupt key to stop a program or the next program in a pipeline
terminating prematurely.

Signals have been provided since the early versions of the UNIX System, but the
signal model provided with systems such as Version 7 was not reliable. Signals could
get lost, and it was difficult for a process to turn off selected signals when executing
critical regions of code. Both 4.3BSD and SVR3 made changes to the signal model,
adding what are called reliable signals. But the changes made by Berkeley and AT&T
were incompatible. Fortunately, POSIX.1 standardized the reliable-signal routines, and
that is what we describe here.

In this chapter, we start with an overview of signals and a description of what each
signal is normally used for. Then we look at the problems with earlier implementations.
It is often important to understand what is wrong with an implementation before seeing
how to do things correctly. This chapter contains numerous examples that are not
entirely correct and a discussion of the defects.

Signal Concepts

First, every signal has a name. These names all begin with the three characters SIG. For
example, SIGABRT is the abort signal that is generated when a process calls the abort
function. SIGALRM is the alarm signal that is generated when the timer set by the
alarm function goes off. Version 7 had 15 different signals; SVR4 and 4.4BSD both have
31 different signals. FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22 support 31 different

289

290 Signals

Chapter 10

signals, whereas Solaris 9 supports 38 different signals. Both Linux and Solaris,
however, support additional application-defined signals as real-time extensions (the
real-time extensions in POSIX aren’t covered in this book; refer to Gallmeister [1995] for
more information).

These names are all defined by positive integer constants (the signal number) in the
header <signal.h>.

Implementations actually define the individual signals in an alternate header file, but this
header file is included by <signal.h>. It is considered bad form for the kernel to include
header files meant for user-level applications, so if the applications and the kernel both need
the same definitions, the information is placed in a kernel header file that is then included by
the user-level header file. Thus, both FreeBSD 5.2.1 and Mac OS X 10.3 define the signals in
<sys/signal.h>. Linux 2.4.22 defines the signals in <bits/signum.h>, and Solaris 9
defines them in <sys/iso/signal iso.h>.

No signal has a signal number of 0. We'll see in Section 10.9 that the ki1l function uses
the signal number of 0 for a special case. POSIX.1 calls this value the null signal.
Numerous conditions can generate a signal.

The terminal-generated signals occur when users press certain terminal keys.
Pressing the DELETE key on the terminal (or Control-C on many systems)
normally causes the interrupt signal (SIGINT) to be generated. This is how to
stop a runaway program. (We'll see in Chapter 18 how this signal can be
mapped to any character on the terminal.)

Hardware exceptions generate signals: divide by 0, invalid memory reference,
and the like. These conditions are usually detected by the hardware, and the
kernel is notified. The kernel then generates the appropriate signal for the
process that was running at the time the condition occurred. For example,
SIGSEGV is generated for a process that executes an invalid memory reference.

The k111(2) function allows a process to send any signal to another process or
process group. Naturally, there are limitations: we have to be the owner of the
process that we're sending the signal to, or we have to be the superuser.

The kill(l) command allows us to send signals to other processes. This
program is just an interface to the kill function. This command is often used
to terminate a runaway background process.

Software conditions can generate signals when something happens about which
the process should be notified. These aren’t hardware-generated conditions (as
is the divide-by-0 condition), but software conditions. Examples are SIGURG
(generated when out-of-band data arrives over a network connection), SIGPIPE
(generated when a process writes to a pipe after the reader of the pipe has
terminated), and SIGALRM (generated when an alarm clock set by the process
expires).

Signals are classic examples of asynchronous events. Signals occur at what appear
to be random times to the process. The process can’t simply test a variable (such as
errno) to see whether a signal has occurred; instead, the process has to tell the kernel
“if and when this signal occurs, do the following.”

Section 10.2

Signal Concepts 291

We can tell the kernel to do one of three things when a signal occurs. We call this
the disposition of the signal, or the action associated with a signal.

1.

Ignore the signal. This works for most signals, but two signals can never be
ignored: SIGKILL and SIGSTOP. The reason these two signals can’t be ignored
is to provide the kernel and the superuser with a surefire way of either killing or
stopping any process. Also, if we ignore some of the signals that are generated
by a hardware exception (such as illegal memory reference or divide by 0), the
behavior of the process is undefined.

Catch the signal. To do this, we tell the kernel to call a function of ours
whenever the signal occurs. In our function, we can do whatever we want to
handle the condition. If we're writing a command interpreter, for example,
when the user generates the interrupt signal at the keyboard, we probably want
to return to the main loop of the program, terminating whatever command we
were executing for the user. If the SIGCHLD signal is caught, it means that a
child process has terminated, so the signal-catching function can call waitpid
to fetch the child’s process ID and termination status. As another example, if
the process has created temporary files, we may want to write a signal-catching
function for the SIGTERM signal (the termination signal that is the default signal
sent by the kill command) to clean up the temporary files. Note that the two
signals SIGKILL and SIGSTOP can’t be caught.

Let the default action apply. E\}ery signal has a default action, shown in
Figure 10.1. Note that the default action for most signals is to terminate the
process.

Figure 10.1 lists the names of all the signals, an indication of which systems support the
signal, and the default action for the signal. The SUS column contains ¢ if the signal is
defined as part of the base POSIX.1 specification and XSI if it is defined as an XSI
extension to the base.

When the default action is labeled “terminate+core,” it means that a memory image
of the process is left in the file named core of the current working directory of the
process. (Because the file is named core, it shows how long this feature has been part
of the UNIX System.) This file can be used with most UNIX System debuggers to
examine the state of the process at the time it terminated.

The generation of the core file is an implementation feature of most versions of the UNIX
System. Although this feature is not part of POSIX.1, it is mentioned as a potential
implementation-specific action in the Single UNIX Specification’s XSI extension.

The name of the core file varies among implementations. On FreeBSD 5.2.1, for example, the
core file is named cmdname.core, where cmdname is the name of the command corresponding to
the process that received the signal. On Mac OS X 10.3, the core file is named core.pid, where
pid is the ID of the process that received the signal. (These systems allow the core filename to
be configured via a sysct1 parameter.)

Most implementations leave the core file in the current working directory of the corresponding
process; Mac OS X places all core files in /cores instead.

292 Signals Chapter 10
Name Description ISO C SsuUs Fr;eZBJS D IZJT;)Z(Malc O.OSS X 501;“5 Default action
SIGABRT abnormal termination (abort) * |terminate+core
SIGALRM timer expired (alarm) . . . * |terminate
SIGRUS hardware fault . . ® |terminate+core
SIGCANCEL |threads library internal use * |ignore
SIGCHLD change in status of child . . . e |ignore
SIGCONT continue stopped process . . . * |continue/ignore
SIGEMT hardware fault . . . * |terminate+core
SIGFPE arithmetic exception ¢ |terminate+core
SIGFREEZE |checkpoint freeze * |ignore
SIGHUP hangup . . . ¢ |terminate
SIGILL illegal instruction e |terminate+core
SIGINFO status request from keyboard . . ignore
SIGINT terminal interrupt character ® |terminate
SIGIO asynchronous 1/0 . . . ® |terminate/ignore
SIGIOT hardware fault . . . * |terminate+core
SIGKILL termination . . . * |terminate
SIGLWP threads library internal use * |ignore
SIGPIPE write to pipe with no readers ¢ |terminate
SIGPOLL pollable event (poll) XSI . e |terminate
SIGPROF profiling time alarm (setitimer) XSI . . . ® |terminate
SIGPWR power fail/restart . * |terminate/ignore
SIGQUIT terminal quit character terminate+core
SIGSEGV invalid memory reference ® |terminate+core
SIGSTKFLT |coprocessor stack fault . terminate
SIGSTOP stop 4 b b b ® |stop process
SIGSYS invalid system call XSI . . . * |terminate+core
SIGTERM termination o ¢ |terminate
SIGTHAW checkpoint thaw * |ignore
SIGTRAP hardware fault XSl . . . * |terminate+core
SIGTSTP terminal stop character * |stop process
SIGTTIN background read from control tty * |stop process
SIGTTOU background write to control tty e |stop process
SIGURG urgent condition (sockets) * |ignore '
SIGUSR1 user-defined signal * | terminate
SIGUSR2 user-defined signal ® |terminate
SIGVTALRM |virtual time alarm (setitimer) XSI terminate
SIGWAITING threads library internal use * |ignore
SIGWINCH |terminal window size change . . . * |ignore
SIGXCPU CPU limit exceeded (setrlimit) XSI . . . ¢ |terminate+core/
ignore
SIGXFSZ file size limit exceeded (setrlimit) XSI . . . e |terminate+core/
ignore
SIGXRES resource control exceeded * |ignore

Figure 10.1 UNIX System signals

The core file will not be generated if (a) the process was set-user-ID and the current
user is not the owner of the program file, or (b) the process was set-group-ID and the
current user is not the group owner of the file, (c) the user does not have permission to
write in the current working directory, (d) the file already exists and the user does not

Section 10.2

Signal Concepts 293

have permission to write to it, or (e) the file is too big (recall the RLIMIT_CORE limit in
Section 7.11). The permissions of the core file (assuming that the file doesn’t already
exist) are usually user-read and user-write, although Mac OS X sets only user-read.

In Figure 10.1, the signals with a description “hardware fault” correspond to
implementation-defined hardware faults. Many of these names are taken from the

_original PDP-11 implementation of the UNIX System. Check your system’s manuals to

determine exactly what type of error these signals correspond to.

We now describe each of these signals in more detail.

SIGABRT

SIGALRM

SIGBUS

SIGCANCEL

SIGCHLD

SIGCONT

SIGEMT

This signal is generated by calling the abort function (Section 10.17).
The process terminates abnormally.

This signal is generated when a timer set with the alarm function
expires (see Section 10.10 for more details). This signal is also generated
when an interval timer set by the setitimer(2) function expires.

This indicates an implementation-defined hardware fault.
Implementations usually generate this signal on certain types of memory
faults, as we describe in Section 14.9.

This signal is used internally by the Solaris threads library. It is not
meant for general use.

Whenever a process terminates or stops, the SIGCHLD signal is sent to
the parent. By default, this signal is ignored, so the parent must catch
this signal if it wants to be notified whenever a child’s status changes.
The normal action in the signal-catching function is to call one of the
wait functions to fetch the child’s process ID and termination status.

Earlier releases of System V had a similar signal named SIGCLD (without
the H). The semantics of this signal were different from those of other
signals, and as far back as SVR2, the manual page strongly discouraged
its use in new programs. (Strangely enough, this warning disappeared
in the SVR3 and SVR4 versions of the manual page.) Applications
should use the standard SIGCHLD signal, but be aware that many
systems define SIGCLD to be the same as SIGCHLD for backward
compatibility. If you maintain software that uses SIGCLD, you need to
check your system’s manual page to see what semantics it follows. We
discuss these two signals in Section 10.7.

This job-control signal is sent to a stopped process when it is continued.
The default action is to continue a stopped process, but to ignore the
signal if the process wasn’t stopped. A full-screen editor, for example,
might catch this signal and use the signal handler to make a note to
redraw the terminal screen. See Section 10.20 for additional details.

This indicates an implementation-defined hardware fault.
The name EMT comes from thé PDP-11 “emulator trap” instruction. Not all

platforms support this signal. On Linux, for example, SIGEMT is supported
only for selected architectures, such as SPARC, MIPS, and PA-RISC.

294

Signals

Chapter 10

SIGFPE

SIGFREEZE

SIGHUP

SIGILL

SIGINFO

SIGINT

SIGIO

This signals an arithmetic exception, such as divide by 0, floating-point
overflow, and so on.

This signal is defined only by Solaris. It is used to notify processes that
need to take special action before freezing the system state, such as might
happen when a system goes into hibernation or suspended mode.

This signal is sent to the controlling process (session leader) associated
with a controlling terminal if a disconnect is detected by the terminal
interface. Referring to Figure 9.12, we see that the signal is sent to the
process pointed to by the s_leader field in the session structure.
This signal is generated for this condition only if the terminal’s CLOCAL
flag is not set. (The CLOCAL flag for a terminal is set if the attached
terminal is local. The flag tells the terminal driver to ignore all modem
status lines. We describe how to set this flag in Chapter 18.)

Note that the session leader that receives this signal may be in the
background; see Figure 9.7 for an example. This differs from the normal
terminal-generated signals (interrupt, quit, and suspend), which are
always delivered to the foreground process group.

This signal is also generated if the session leader terminates. In this case,
the signal is sent to each process in the foreground process group.

This signal is commonly used to notify daemon processes (Chapter 13) to
reread their configuration files. The reason SIGHUP is chosen for this is
that a daemon should not have a controlling terminal and would
normally never receive this signal.

This signal indicates that the process has executed an illegal hardware
instruction.

4.3BSD generated this signal from the abort function. SIGABRT is now used
for this.

This BSD signal is generated by the terminal driver when we type the
status key (often Control-T). This signal is sent to all processes in the
foreground process group (refer to Figure 9.8). This signal normally
causes status information on processes in the foreground process group
to be displayed on the terminal.

Linux doesn’t provide support for SIGINFO except on the Alpha platform,
where it is defined to be the same value as SIGPWR.

This signal is generated by the terminal driver when we type the
interrupt key (often DELETE or Control-C). This signal is sent to all
processes in the foreground process group (refer to Figure 9.8). This
signal is often used to terminate a runaway program, especially when it's
generating a lot of unwanted output on the screen.

This signal indicates an asynchronous I/O event. We discuss it in
Section 14.6.2.

Section 10.2

Signal Concepts 295

SIGIOT

SIGKILL

SIGLWP

SIGPIPE

SIGPOLL

SIGPROF

SIGPWR

In Figure 10.1, we labeled the default action for SIGIO as either “terminate” or
“ignore.” Unfortunately, the default depends on the system. Under System V,
SIGIO is identical to SIGPOLL, so its default action is to terminate the process.
Under BSD, the default is to ignore the signal.

Linux 2.4.22 and Solaris 9 define SIGIO to be the same value as SIGPOLL, so
the default behavior is to terminate the process. On FreeBSD 5.2.1 and Mac OS
X 10.3, the default is to ignore the signal.

This indicates an implementation-defined hardware fault.

The name IOT comes from the PDP-11 mnemonic for the “input/output TRAP”
instruction. Earlier versions of System V generated this signal from the abort
function. SIGABRT is now used for this.

On FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9, SIGIOT is defined
to be the same value as SIGABRT.

This signal is one of the two that can’t be caught or ignored. It provides
the system administrator with a sure way to kill any process.

This signal is used internally by the Solaris threads library, and is not
available for general use.

If we write to a pipeline but the reader has terminated, SIGPIPE is
generated. We describe pipes in Section 15.2. This signal is also
generated when a process writes to a socket of type SOCK_STREAM that
is no longer connected. We describe sockets in Chapter 16.

This signal can be generated when a specific event occurs on a pollable
device. We describe this signal with the pol1l function in Section 14.5.2.
SIGPOLL originated with SVR3, and loosely corresponds to the BSD
SIGIO and SIGURG signals.

On Linux and Solaris, SIGPOLL is defined to have the same value as SIGIO.

This signal is generated when a profiling interval timer set by the
setitimer(2) function expires.

This signal is system dependent. Its main use is on a system that has an
uninterruptible power supply (UPS). If power fails, the UPS takes over
and the software can usually be notified. Nothing needs to be done at
this point, as the system continues running on battery power. But if the
battery gets low (if the power is off for an extended period), the software
is usually notified again; at this point, it behooves the system to shut
everything down within about 15-30 seconds. This is when SIGPWR
should be sent. Most systems have the process that is notified of the
low-battery condition send the SIGPWR signal to the init process, and
init handles the shutdown.

Linux 2.4.22 and Solaris 9 have entries in the inittab file for this purpose:
powerfail and powerwait (or powerokwait).

In Figure 10.1, we labeled the default action for SIGPWR as either “terminate”
or “ignore.” Unfortunately, the default depends on the system. The default on
Linux is to terminate the process. On Solaris, the signal is ignored by default.

296 Signals

Chapter 10

SIGQUIT

SIGSEGV

SIGSTKFLT

SIGSTOP

SIGSYS

SIGTERM
SIGTHAW

SIGTRAP

SIGTSTP

SIGTTIN

This signal is generated by the terminal driver when we type the
terminal quit key (often Control-backslash). This signal is sent to all
processes in the foreground process group (refer to Figure 9.8). This
signal not only terminates the foreground process group (as does
SIGINT), but also generates a core file.

This signal indicates that the process has made an invalid memory
reference.

The name SEGV stands for “segmentation violation.”

This signal is defined only by Linux. This signal showed up in the
earliest versions of Linux, intended to be used for stack faults taken by
the math coprocessor. This signal is not generated by the kernel, but
remains for backward compatibility.

This job-control signal stops a process. It is like the interactive stop
signal (SIGTSTP), but SIGSTOP cannot be caught or ignored.

This signals an invalid system call. Somehow, the process executed a
machine instruction that the kernel thought was a system call, but the
parameter with the instruction that indicates the type of system call was
invalid. This might happen if you build a program that uses a new
system call and you then try to run the same binary on an older version
of the operating system where the system call doesn't exist.

This is the termination signal sent by the ki11(1) command by default.

This signal is defined only by Solaris and is used to notify processes that
need to take special action when the system resumes operation after
being suspended.

This indicates an implementation-defined hardware fault.

The signal name comes from the PDP-11 TRAP instruction. Implementations
often use this signal to transfer control to a debugger when a breakpoint
instruction is executed.

This interactive stop signal is generated by the terminal driver when we
type the terminal suspend key (often Control-Z). This signal is sent to all
processes in the foreground process group (refer to Figure 9.8).

Unfortunately, the term stop has different meanings. When discussing job
control and signals, we talk about stopping and continuing jobs. The terminal
driver, however, has historically used the term stop to refer to stopping and
starting the terminal output using the Control-S and Control-Q characters.
Therefore, the terminal driver calls the character that generates the interactive
stop signal the suspend character, not the stop character.

This signal is generated by the terminal driver when a process in a
background process group tries to read from its controlling terminal.
(Refer to the discussion of this topic in Section 9.8.) As special cases, if

Section 10.2

Signal Concepts 297

SIGTTOU

SIGURG

SIGUSR1

SIGUSR2

SIGVTALRM

SIGWAITING

SIGWINCH

SIGXCPU

either (a) the reading process is ignoring or blocking this signal or (b) the
process group of the reading process is orphaned, then the signal is not
generated; instead, the read operation returns an error with errno set to
EIO.

This signal is generated by the terminal driver when a process in a
background process group tries to write to its controlling terminal.
(Refer to the discussion of this topic in Section 9.8.) Unlike the SIGTTIN
signal just described, a process has a choice of allowing background
writes to the controlling terminal. We describe how to change this option
in Chapter 18.

If background writes are not allowed, then like the SIGTTIN signal,
there are two special cases: if either (a) the writing process is ignoring or
blocking this signal or (b) the process group of the writing process is
orphaned, then the signal is not generated; instead, the write operation
returns an error with errno set to EIO.

Regardless of whether background writes are allowed, certain terminal
operations (other than writing) can also generate the SIGTTOU signal:
tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, and
tcsetpgrp. We describe these terminal operations in Chapter 18.

This signal notifies the process that an urgent condition has occurred.
This signal is optionally generated when out-of-band data is received on
a network connection.

This is a user-defined signal, for use in application programs.

This is another user-defined signal, similar to SIGUSRI1, for use in
application programs.

This signal is generated when a virtual interval timer set by the
setitimer(2) function expires.

This signal is used internally by the Solaris threads library, and is not
available for general use.

The kernel maintains the size of the window associated with each
terminal and pseudo terminal. A process can get and set the window
size with the ioctl function, which we describe in Section 18.12. If a
process changes the window size from its previous value using the
ioctl set-window-size command, the kernel generates the SIGWINCH
signal for the foreground process group.

The Single UNIX Specification supports the concept of resource limits as
an XSI extension; refer to Section 7.11. If the process exceeds its soft CPU
time limit, the SIGXCPU signal is generated.

In Figure 10.1, we labeled the default action for SIGXCPU as either “terminate
“with a core file” or “ignore.” Unfortunately, the default depends on the
operating system. Linux 2.422 and Solaris 9 support a default action of

298

Signals

Chapter 10

SIGXFSZ

SIGXRES

terminate with a core file, whereas FreeBSD 5.2.1 and Mac OS X 10.3 support a
default action of ignore. The Single UNIX Specification requires that the
default action be to terminate the process abnormally. ‘Whether a core file is
generated is left up to the implementation.

This signal is generated if the process exceeds its soft file size limit; refer
to Section 7.11.

Just as with SIGXCPU, the default action taken with SIGXFSZ depends on the
operating system. On Linux 2.4.22 and Solaris 9, the default is to terminate the
process and create a core file. On FreeBSD 5.2.1 and Mac OS X 10.3, the default
is to be ignored. The Single UNIX Specification requires that the default action
be to terminate the process abnormally. Whether a core file is generated is left
up to the implementation.

This signal is defined only by Solaris. This signal is optionally used to
notify processes that have exceeded a preconfigured resource value. The
Solaris resource control mechanism is a general facility for controlling the
use of shared resources among independent application sets.

10.3 signal Function

The simplest interface to the signal features of the UNIX System is the signal function.

#include <signal.h>

void (*signal (int.signo, void (*func) (int))) (int);

Returns: previous disposition of signal (see following) if OK, SIG_ERR on error

The signal function is defined by ISO C, which doesn't involve multiple processes, process
groups, terminal I/0O, and the like. Therefore, its definition of signals is vague enough to be
almost useless for UNIX systems.

Implementations derived from UNIX System V support the signal function, but it provides
the old unreliable-signal semantics. (We describe these older semantics in Section 10.4.) This
function provides backward compatibility for applications that require the older semantics.
New applications should not use these unreliable signals.

4.4BSD also provides the signal function, but it is defined in terms of the sigaction
function (which we describe in Section 10.14), so using it under 4.4BSD provides the newer
reliable-signal semantics. FreeBSD 5.2.1 and Mac OS X 10.3 follow this strategy.

Solaris 9 has roots in both System V and BSD, but it chooses to follow the System V semantics
for the signal function.

On Linux 2.4.22, the semantic of signal can follow either the BSD or System V semantics,
depending on the version of the C library and how you compile your application.

Because the semantics of signal differ among implementations, it is better to use the
sigaction function instead. When we describe the sigaction function in Section 10.14, we
provide an implementation of signal that uses it. All the examples in this text use the
signal function that we show in Figure 10.18.

Section 10.3 signal Function 299

The signo argument is just the name of the signal from Figure 10.1. The value of
func is (a) the constant SIG_IGN, (b) the constant SIG DFL, or (c) the address of a
function to be called when the signal occurs. If we specify SIG_IGN, we are telling the
system to ignore the signal. (Remember that we cannot ignore the two signals SIGKILL
and SIGSTOP.) When we specify SIG_DFL, we are setting the action associated with
the signal to its default value (see the final column in Figure 10.1). When we specify the
address of a function to be called when the signal occurs, we are arranging to “catch”
the signal. We call the function either the signal handler or the signal-catching function.

The prototype for the signal function states that the function requires two
arguments and returns a pointer to a function that returns nothing (void). The signal
function’s first argument, signo, is an integer. The second argument is a pointer to a
function that takes a single integer argument and returns nothing. The function whose
address is returned as the value of signal takes a single integer argument (the final
(int)). In plain English, this declaration says that the signal handler is passed a single
integer argument (the signal number) and that it returns nothing. When we call
signal to establish the signal handler, the second argument is a pointer to the function.
The return value from signal is the pointer to the previous signal handler.

Many systems call the signal handler with additional, implementation-dependent arguments.
We discuss this further in Section 10.14.

The perplexing signal function prototype shown at the beginning of this section
can be made much simpler through the use of the following typedef [Plauger 1992]:

typedef void Sigfunc(int);
Then the prototype becomes
Sigfunc *signal (int, Sigfunc *);

We've included this typedef in apue.h (Appendix B) and use it with the functions in

this chapter.

If we examine the system’s header <signal.h>, we probably find declarations of
the form

#define SIG_ERR (void (*) () -1

#define SIG_DFL (void (*) ())o0

#define SIG_IGN (void (*) ())1

These constants can be used in place of the “pointer to a function that takes an integer
argument and returns nothing,” the second argument to signal, and the return value
from signal. The three values used for these constants need not be -1, 0, and 1. They
must be three values that can never be the address of any declarable function. Most
UNIX systems use the values shown.

Example

Figure 10.2 shows a simple signal handler that catches either of the two user-defined
signals and prints the signal number. In Section 10.10, we describe the pause function,
which simply suspends the calling process until a signal is received.

300 Signals Chapter 10

#include "apue.h"
static void sig_usr(int); /* one handler for both signals */

int
main (void)

{

if (signal (SIGUSR1l, sig_usr) == SIG_ERR)
err_sys("can’t catch SIGUSR1");

if (signal (SIGUSR2, sig _usr) == SIG_ERR)
err sys("can’'t catch SIGUSR2");

for (; ;)
pause () ;

}

static void
sig_usr(int signo) /* argument is signal number */
{
if (signo == SIGUSR1)
printf ("received SIGUSR1\n");
else if (signo == SIGUSR2)
printf ("received SIGUSR2\n") ;
else
err_dump("received signal %d\n", signo);

Figure 10.2 Simple program to catch SIGUSR1 and SIGUSR2

We invoke the program in the background and use the ki11(1) command to send it
signals. Note that the term kill in the UNIX System is a misnomer. The kill(1)
command and the kil1(2) function just send a signal to a process or process group.
Whether or not that signal terminates the process depends on which signal is sent and
whether the process has arranged to catch the signal.

$./a.out & start process in background

[1] 7216 job-control shell prints job number and process ID
$ kill -USR1 7216 send it SIGUSR1

received SIGUSR1

$ kill -USR2 7216 send it SIGUSR2

received SIGUSR2

$ kill 7216 now send it SIGTERM

[1]+ Terminated ./a.out

When we send the SIGTERM signal, the process is terminated, since it doesn’t catch the
signal, and the default action for the signal is termination. o

Program Start-Up

When a program is executed, the status of all signals is either default or ignore.
Normally, all signals are set to their default action, unless the process that calls exec is
ignoring the signal. Specifically, the exec functions change the disposition of any

Section 10.4 Unreliable Signals 301

signals being caught to their default action and leave the status of all other signals
alone. (Naturally, a signal that is being caught by a process that calls exec cannot be
caught by the same function in the new program, since the address of the signal-
catching function in the caller probably has no meaning in the new program file that is
executed.)

One specific example is how an interactive shell treats the interrupt and quit signals
for a background process. With a shell that doesn’t support job control, when we
execute a process in the background, as in

cc main.c &

the shell automatically sets the disposition of the interrupt and quit signals in the
background process to be ignored. This is so that if we type the interrupt character, it
doesn’t affect the background process. If this weren’t done and we typed the interrupt
character, it would terminate not only the foreground process, but also all the
background processes.

Many interactive programs that catch these two signals have code that looks like

void sig _int(int), sig_quit{int);

if (signal (SIGINT, SIG_—IGN) t= SIG'IGN)
signal (SIGINT, sig_int);
if (signal (SIGQUIT, SIG_IGN) = SIG_IGN)

signal (SIGQUIT, sig_quit);

Doing this, the process catches the signal only if the signal is not currently being
ignored.

These two calls to signal also show a limitation of the signal function: we are
not able to determine the current disposition of a signal without changing the
disposition. We'll see later in this chapter how the sigaction function allows us to
determine a signal’s disposition without changing it.

Process Creation

10.4

When a process calls fork, the child inherits the parent’s signal dispositions. Here,
since the child starts off with a copy of the parent’s memory image, the address of a
signal-catching function has meaning in the child.

Unreliable Signals

In earlier versions of the UNIX System (such as Version 7), signals were unreliable. By
this we mean that signals could get lost: a signal could occur and the process would
never know about it. Also, a process had little control over a signal: a process could
catch the signal or ignore it. Sometimes, we would like to tell the kernel to block a
signal: don't ignore it, just remember if it occurs, and tell us later when we're ready.

Changes were made with 4.2BSD to provide what are called reliable signals. A different set of
changes was then made in SVR3 to provide reliable signals under System V. POSIX.1 chose the
BSD model to standardize.

302 Signals Chapter 10

One problem with these early versions is that the action for a signal was reset to its
default each time the signal occurred. (In the previous example, when we ran the
program in Figure 10.2, we avoided this detail by catching each signal only once.) The
classic example from programming books that described these earlier systems concerns
how to handle the interrupt signal. The code that was described usually looked like

int sig int(); /* my signal handling function */
signal (SIGINT, sig_int); /* establish handler */

sig _int ()

{

signal (SIGINT, sig int); /* reestablish handler for next time */
: /* process the signal ... */
}
(The reason the signal handler is declared as returning an integer is that these early
systems didn’t support the ISO C void data type.)

The problem with this code fragment is that there is a window of time—after the
signal has occurred, but before the call to signal in the signal handler—when the
interrupt signal could occur another time. This second signal would cause the default
action to occur, which for this signal terminates the process. This is one of those
conditions that works correctly most of the time, causing us to think that it is correct,
when it isn’t.

Another problem with these earlier systems is that the process was unable to turn a
signal off when it didn’t want the signal to occur. All the process could do was ignore
the signal. There are times when we would like to tell the system “prevent the
following signals from occurring, but remember if they do occur.” The classic example
that demonstrates this flaw is shown by a piece of code that catches a signal and sets a
flag for the process that indicates that the signal occurred:

int sig_int_ flag; /* set nonzero when signal occurs */

main ()

{

int sig_int () ; /* my signal handling function */
signal (SIGINT, sig int); /* establish handler */

while (sig _int flag == 0)
pause () ; /* go to sleep, waiting for signal */

}

sig_int ()

{
signal (SIGINT, sig int); /* reestablish handler for next time */
sig_int flag = 1; /* set flag for main loop to examine */

Section 10.5 Interrupted Svstem Calls 303

10.5

Here, the process is calling the pause function to put it to sleep until a signal is caught.
When the signal is caught, the signal handler just sets the flag sig_int_flag toa
nonzero value. The process is automatically awakened by the kernel after the signal
handler returns, notices that the flag is nonzero, and does whatever it needs to do. But
there is a window of time when things can go wrong. If the signal occurs after the test
of sig_int_ flag, but before the call to pause, the process could go to sleep forever
(assuming that the signal is never generated again). This occurrence of the signal is lost.
This is another example of some code that isn’t right, yet it works most of the time.
Debugging this type of problem can be difficult.

Interrupted System Calls

A characteristic of earlier UNIX systems is that if a process caught a signal while the
process was blocked in a “slow” system call, the system call was interrupted. The
system call returned an error and errno was set to EINTR. This was done under the
assumption that since a signal occurred and the process caught it, there is a good chance
that something has happened that should wake up the blocked system call.

Here, we have to differentiate between a system call and a function. It is a system call within
the kernel that is interrupted when a signal is caught.

To support this feature, the system calls are divided into two categories: the “slow”
system calls and all the others. The slow system calls are those that can block forever.
Included in this category are

¢ Reads that can block the caller forever if data isn’t present with certain file types
(pipes, terminal devices, and network devices)

e Writes that can block the caller forever if the data can’t be accepted immediately
by these same file types

o Opens that block until some condition occurs on certain file types (such as an
open of a terminal device that waits until an attached modem answers the
phone)

e The pause function (which by definition puts the calling process to sleep until a
signal is caught) and the wait function

e Certain ioctl operations

e Some of the interprocess communication functions (Chapter 15)

The notable exception to these slow system calls is anything related to disk 1/0.
Although a read or a write of a disk file can block the caller temporarily (while the disk
driver queues the request and then the request is executed), unless a hardware error
occurs, the 1/0 operation always returns and unblocks the caller quickly.

One condition that is handled by interrupted system calls, for example, is when a
process initiates a read from a terminal device and the user at the terminal walks away
from the terminal for an extended period. In this example, the process could be blocked
for hours or days and would remain so unless the system was taken down.

304

Signals Chapter 10

POSIX.1 semantics for interrupted reads and writes changed with the 2001 version of the
standard. Earlier versions gave implementations a choice for how to deal with reads and
writes that have processed partial amounts of data. If read has received and transferred
data to an application’s buffer, but has not vet received all that the application requested and is
then interrupted, the operating system could either fail the system call with errno set to
EINTR or allow the system call to succeed, returning the partial amount of data received.
Similarly, if write is interrupted after transferring some of the data in an application’s buffer,
the operation system could either fail the system call with errno set to EINTR or allow the
system call to succeed, returning the partial amount of data written. Historically,
implementations derived from System V fail the system call, whereas BSD-derived
implementations return partial success. With the 2001 version of the POSIX.1 standard, the
BSD-style semantics are required.

The problem with interrupted system calls is that we now have to handle the error
return explicitly. The typical code sequence (assuming a read operation and assuming
that we want to restart the read even if it’s interrupted) would be

again:
if ((n = read(fd, buf, BUFFSIZE)) < 0) {
if (errno == EINTR)
goto again; /* just an interrupted system call */
/* handle other errors */
}

To prevent applications from having to handle interrupted system calls, 4.2BSD
introduced the automatic restarting of certain interrupted system calls. The system calls
that were automatically restarted are ioctl, read, readv, write, writev, wait, and
waitpid. As we've mentioned, the first five of these functions are interrupted by a
signal only if they are operating on a slow device; wait and waitpid are always
interrupted when a signal is caught. Since this caused a problem for some applications
that didn’t want the operation restarted if it was interrupted, 4.3BSD allowed the
process to disable this feature on a per signal basis.,

POSIX.1 allows an implementation to restart system calls, but it is not required. The Single
UNIX Specitication defines the SA_RESTART flag as an XSI extension to sigaction to allow
applications to request that interrupted system calls be restarted.

System V has never restarted system calls by default. BSD, on the other hand, restarts them if
interrupted by signals. By default, FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 restart
system calls interrupted by signals. The default on Solaris 9, however, is to return an error
(EINTR) instead.

One of the reasons 4.2BSD introduced the automatic restart feature is that
sometimes we don’t know that the input or output device is a slow device. If the
program we write can be used interactively, then it might be reading or writing a slow
device, since terminals fall into this category. If we catch signals in this program, and if
the system doesn’t provide the restart capability, then we have to test every read or
write for the interrupted error return and reissue the read or write.

Figure 10.3 summarizes the signal functions and their semantics provided by the
various implementations.

We don’t discuss the older sigset and sigvec functions. Their use has been superceded by

the sigaction function; they are included only for completeness. In contrast, some
implementations promote the signal function as a simplified interface to sigaction.

Section 10.6 Reentrant Functions 305

10.6

Functions System ‘ - i
’ | remains installed | block signals | interrupted |

i ‘) N i) ; Automatic
I Signal handler Ability to restart of
i
i
’ ! system calls?

— —
| ISOC, POSIX.1 | unspecified unspecified unspecified J
I V7,SVR2, SVR3, ;
: © SVR4, Solaris ‘ never
' signal "32BSD b . . always
‘ 33BSD,44BSD, | ~
‘ | FreeBSD, Linux, ; . . default |
| Mac OS X '
L—*‘*—_——T—————‘ »i:*A'_‘ -
! I XSI . . unspecified
| sigset SVR3,SVRY,
. . never

. Linux, Solaris

l
— :b —_— : RSE——
3 iiZBSD i . . alwayﬁ

T4.3BSD, 4.4BSD,

\
} ! FreeBSD, Mac OS X

et

| ; POSIX.1 ; . . unspecified

| imction | XSL44BSD.SVRY,

| 519 | FreeBSD, Mac OS X, . . optionaj

. . default

1 Linux, Solaris |

Figure 10.3 Features provided by various signal implementations

Be aware that UNIX systems from other vendors can have values different from those
shown in this figure. For example, sigaction under SunOS 4.1.2 restarts an
interrupted system call by default, different from the platforms listed in Figure 10.3.

In Figure 10.18, we provide our own version of the signal function that
automatically tries to restart interrupted system calls (other than for the SIGALRM
signal). In Figure 10.19, we provide another function, signal_intr, that tries to never
do the restart.

We talk more about interrupted system calls in Section 14.5 with regard to the
select and poll functions.

Reentrant Functions

When a signal that is being caught is handled by a process, the normal sequence of
instructions being executed by the process is temporarily interrupted by the signal
handler. The process then continues executing, but the instructions in the signal
handler are now executed. If the signal handler returns (instead of calling exit or
longjmp, for example), then the normal sequence of instructions that the process was
executing when the signal was caught continues executing. (This is similar to what
happens when a hardware interrupt occurs.) But in the signal handler, we can’t tell
where the process was executing when the signal was caught. What if the process was
in the middle of allocating additional memory on its heap using mal loc, and we call

306 Signats Chapter 10

malloc from the signal handler? Or, what if the process was in the middle of a call to a
function, such as getpwnam (Section 6.2), that stores its result in a static location, and
we call the same function from the signal handler? In the malloc example, havoc can
result for the process, since malloc usually maintains a linked list of all its allocated
areas, and it may have been in the middle of changing this list. In the case of
getpwnam, the information returned to the normal caller can get overwritten with the
information returned to the signal handler.

The Single UNIX Specification specifies the functions that are guaranteed to be
reentrant. Figure 10.4 lists these reentrant functions.

L accept : fchmod lseek | sendto i stat

taccess © f£chown lstat i setgid i symlink

laioierror - fentl mkdir , setpgid ; sysconf
alc_resurn fdatasyna mkfifc | setsid | tcdrain

~ailo_suspend fork ’ : open I setsockopt Etcflow
alarm - fpathconf pathconf | setuid | tcflush

jbind ' pause ; shutdown I tcgetattr

icfgetisgeed ¢ pipe i sigaction E tcgetpgrp

| cfgetospeed . sigaddset ; tcsendbreak

Ccfreti ! . sigdelset ! tesetattr

iciset " sigemptyset itcsetpgrp

i chdir " sigfillset : time :

' chmed read | sigismember ! t:imer_getoverrun‘v
chown 2tpee readiink signal i timer gettime

iclock gettime jerrox rasv . sigpause | timer settime

| close getp:d recvirom | sigpending ~ times

iconnect Jetppid : recvmsg ; sigprocmask i umask

icreat getsockname @ rename . sigqueue | uname

: dup getsockopt ©rmdir f sigset ! unlink

idup2 . getuid - select E sigsuspend i utime

| execle S kill sem_post | sleep [wait

| execve . link send socket | waitpid

. _Exit & _exit ' listen sendmsg : socketpair | write |

Figure 10.4 Reentrant functions that may be called from a signal handler

Most functions that are not in Figure 10.4 are missing because (a) they are known to use
static data structures, (b) they call mallac or free, or (c) they are part of the standard
I/O library. Most implementations of the standard I/O library use global data
structures in a nonreentrant way. Note that even though we call printf from signal
handlers in some of our examples, it is not guaranteed to produce the expected results,
since the signal hander can interrupt a call to print £ from our main program.

Be aware that even if we call a function listed in Figure 10.4 from a signal handler,
there is only one errno variable per thread (recall the discussion of errno and threads
in Section 1.7), and we might modify its value. Consider a signal handler that is
invoked right after main has set errno. If the signal handler calls read, for example,
this call can change the value of errno, wiping out the value that was just stored in
main. Therefore, as a general rule, when calling the functions listed in Figure 10.4 from
a signal handler, we should save and restore errnc. (Be aware that a commonly caught

Section 10.6 Reentrant Functions 307

signal is SIGCHLD, and its signal handler usually calls one of the wait functions. All
the wait functions can change errno.)

Note that longjmp (Section 7.10) and siglongjmp (Section 10.15) are missing
from Figure 10.4, because the signal may have occurred while the main routine was
updating a data structure in a nonreentrant way. This data structure could be left half
updated if we call siglongjmp instead of returning from the signal handler. If it is
going to do such things as update global data structures, as we describe here, while
catching signals that cause sigsetjmp to be executed, an application needs to block the
signals while updating the data structures.

Example
Figure 10.5 shows a program that calls the nonreentrant function getpwnam from a

signal handler that is called every second. We describe the alarm function in
Section 10.10. We use it here to generate a SIGALRM signal every second.

#include "apue.h"
#include <pwd.h>

static void
my alarm{int signo)

{
struct passwd *rootptr;
printf("in signal handler\n") ;
if ((rootptr = getpwnam("root")) == NULL)
err_sys("getpwnam(root) error") ;
alarm(l);
}
int

main (void)

{

struct passwd *ptr;

signal (SIGALRM, mywalarm);

alarm(1);
for (; i) |
if ((ptr = getpwnam("sar")) == NULL)
err_ sys("getpwnam error") ;
if (strcmp (ptr->pw_name, "sar") != 0)
printf ("return value corrupted!, pw_name = ¥s\n",
ptr->pw_name) ;
}

meemj(hHmmm%MmmhmmmﬂmmaﬂthMMH

When this program was run, the results were random. Usually, the program would
be terminated by a SIGSEGV signal when the signal handler returned after several
iterations. An examination of the core file showed that the main function had called

308

Signals Chapter 10

10.7

getpwnam, but that some internal pointers had been corrupted when the signal handler
called the same function. Occasionally, the program would run for several seconds
before crashing with a SIGSEGV error. When the main function did run correctly after
the signal had been caught, the return value was sometimes corrupted and sometimes
fine. Once (on Mac OS X), messages were printed from the malloc library routine
warning about freeing pointers not allocated through malloc.

As shown by this example, if we call a nonreentrant function from a signal handler,
the results are unpredictable.)

SIGCLD Semantics

Two signals that continually generate confusion are STGCLD and SIGCHLD. First,
SIGCLD (without the H) is the System V name, and this signal has different semantics
from the BSD signal, named SIGCHLD. The POSIX.1 signal is also named SIGCHLD.

The semantics of the BSD SIGCHLD signal are normal, in that its semantics are
similar to those of all other signals. When the signal occurs, the status of a child has
changed, and we need to call one of the wait functions to determine what has
happened.

System V, however, has traditionally handled the SIGCLD signal differently from
other signals. SVRd-based svstems continue this questionable tradition (i.e.,
compatibility constraint) if we set its disposition using either signal or sigset (the
older, SVR3-compatible functions to set the disposition of a signal). This older handling
of SIGCLD consists of the following.

L. If the process specifically sets its disposition to SIG_IGN, children of the calling
process will not generate zombie processes. Note that this is different from its
default action (SIG_DFL), which from Figure 10.1 is to be ignored. Instead, on
termination, the status of these child processes is discarded. If it subsequently
calls one of the wait functions, the calling process will block until all its
children have terminated, and then wait returns -1 with errno set to ECHILD.
(The default disposition of this signal is to be ignored, but this default will not
cause the preceding semantics to occur. Instead, we specifically have to set its
disposition to SIG_IGN.)

POSIX.1 does not specify what happens when SIGCHLD is ignored, so this behavior is
allowed. The Single UNIX Specification includes an XSI extension specifying that this
behavior be supported for STGCHLD.

+4BSD always generates zombies if SIGCHLD is ignored. If we want to avoid zombies,
we have to wait for our children. FreeBSD 5.2.1 works like £4BSD. Mac OS X 10.3,
however, doesn’t create zombies when SIGCHLD is ignored.

With SVR4, if either signal or sigset is called to set the disposition of STGCHLD to be
ignored, zombies are never generated. Solaris 9 and Linux 2.4.22 follow SVR4 in this
behavior.

With sigaction, we can set the SA_NOCLDWAIT flag (Figure 10.16) to avoid zombies.
This action is supported on all four platforms: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3,
and Solaris 9.

Section 10.7 SIGCLD Semantics 309

2. If we set the disposition of SIGCLD to be caught, the kernel immediately checks
whether any child processes are ready to be waited for and, if so, calls the
SIGCLD handler.

Ttem 2 changes the way we have to write a signal handler for this signal, as illustrated in
the following example.

Example

Recall from Section 10.4 that the first thing to do on entry to a signal handler is to call
signal again, to reestablish the handler. (This action was to minimize the window of
time when the signal is reset back to its default and could get lost.) We show this in
Figure 10.6. This program doesn’t work on some platforms. If we compile and run it
under a traditional System V platform, such as OpenServer 5 or UnixWare 7, the output

#include "apue.h"
#include <sys/wait.h>

static void sig cld{int);

int
main ()
{
pid t pid;
if (signal(SIGCLD, sig_cld) == SIG_ERR)
perror ("signal erroxr") ;
if ((pid = fork()) < 0) {
perror ("fork error");
} else if (pid == 0) { /* child */
sleep(2);
_exit(0);
}
pause () ; /* parent */
exit (0);
}

static void
sig _cld(int signo) /% interrupts pause () */
{
pid_t pid;
int status;
printf ("SIGCLD received\n") ;
if (signal(SIGCLD, sig_cld) == SIG_ERR) /* reestablish handler */
perror ("signal error") ;
if ((pid = wait(&status)) < 0) /* fetch child status */
perror ("wait error");
printf ("pid = $d\n", pid);

Figure 10.6 System V SIGCLD handler that doesn’t work

310 Signals Chapter 10
is a continual string of SIGCLD received lines. Eventually, the process runs out of
stack space and terminates abnormally.

FreeBSD 5.2.1 and Mac OS X 10.3 don’t exhibit this problem, because BSD-based systems
generally don’t support historic System V semantics for SIGCLD. Linux 2.4.22 also doesn’t
exhibit this problem, because it doesn’t call the SIGCHLD signal handler when a process
arranges to catch SIGCHLD and child processes are ready to be waited for, even though
SIGCLD and SIGCHLD are defined to be the same value. Solaris 9, on the other hand, does call
the signal handler in this situation, but includes extra code in the kernel to avoid this problem.
Although the four platforms described in this book solve this problem, realize that platforms
(such as UnixWare) still exist that haven't addressed it.

The problem with this program is that the call to signal at the beginning of the
signal handler invokes item 2 from the preceding discussion—the kernel checks
whether a child needs to be waited for (which there is, since we're processing a
SIGCLD signal), so it generates another call to the signal handler. The signal handler
calls signal, and the whole process starts over again.

To fix this program, we have to move the call to signal after the call to wait. By
doing this, we call signal after fetching the child’s termination status; the signal is
generated again by the kernel only if some other child has since terminated.

POSIX.1 states that when we establish a signal handler for SIGCHLD and there exists a
terminated child we have not yet waited for, it is unspecified whether the signal is generated.
This allows the behavior described previously. But since POSIX.1 does not reset a signal’s
disposition to its default when the signal occurs (assuming that we're using the POSIX.1
sigaction function to set its disposition), there is no need for us to ever establish a signal
handler for SIGCHLD within that handler. o

Be cognizant of the SIGCHLD semantics for your implementation. Be especially
aware of some systems that #define SIGCHLD to be SIGCLD or vice versa. Changing
the name may allow you to compile a program that was written for another system, but
if that program depends on the other semantics, it may not work.

On the four platforms described in this text, SIGCLD is equivalent to SIGCHLD.

10.8 Reliable-Signal Terminology and Semantics

We need to define some of the terms used throughout our discussion of signals. First, a
signal is- generated for a process (or sent to a process) when the event that causes the
signal occurs. The event could be a hardware exception (e.g., divide by 0), a software
condition (e.g., an alarm timer expiring), a terminal-generated signal, or a call to the
kill function. When the signal is generated, the kernel usually sets a flag of some
form in the process table.

We say that a signal is delivered to a process when the action for a signal is taken.
During the time between the generation of a signal and its delivery, the signal is said to
be pending.

A process has the option of blocking the delivery of a signal. If a signal that is
blocked is generated for a process, and if the action for that signal is either the default

Section 109 kill and raise Functions 311

10.9

action or to catch the signal, then the signal remains pending for the process until the
process either (a) unblocks the signal or (b) changes the action to ignore the signal. The
system determines what to do with a blocked signal when the signal is delivered, not
when it's generated. This allows the process to change the action for the signal before
it's delivered. The sigpending function (Section 10.13) can be called by a process to
determine which signals are blocked and pending.

What happens if a blocked signal is generated more than once before the process
unblocks the signal? POSIX.1 allows the system to deliver the signal either once or
more than once. If the system delivers the signal more than once, we say that the
signals are queued. Most UNIX systems, however, do not queue signals unless they
support the real-time extensions to POSIX.1. Instead, the UNIX kernel simply delivers
the signal once.

The manual pages for SVR2 claimed that the SIGCLD signal was queued while the process was
executing its SIGCLD signal handler. Although this might have been true on a conceptual
level, the actual implementation was different. Instead, the signal was regenerated by the
kernel as we described in Section 10.7. In SVR3, the manual was changed to indicate that the
SIGCLD signal was ignored while the process was executing its signal handler for STGCLD.
The SVR4 manual removed any mention of what happens to SIGCLD signals that are
generated while a process is executing its SIGCLD signal handler.

The SVR4 sigaction(2) manual page in AT&T [1990e] claims that the SA_SIGINFO flag
(Figure 10.16) causes signals to be reliably queued. This is wrong. Apparently, this feature
was partially implemented within the kernel, but it is not enabled in SVR4. Curiously, the
SVID doesn’t make the same claims of reliable queuing.

What happens if more than one signal is ready to be delivered to a process?
POSIX.1 does not specify the order in which the signals are delivered to the process.
The Rationale for POSIX.1 does suggest, however, that signals related to the current
state of the process be delivered before other signals. (SIGSEGV is one such signal.)

Each process has a signal mask that defines the set of signals currently blocked from
delivery to that process. We can think of this mask as having one bit for each possible
signal. If the bit is on for a given signal, that signal is currently blocked. A process can
examine and change its current signal mask by calling sigprocmask, which we
describe in Section 10.12.

Since it is possible for the number of signals to exceed the number of bits in an
integer, POSIX.1 defines a data type, called sigset_t, that holds a signal set. The
signal mask, for example, is stored in one of these signal sets. We describe five
functions that operate on signal sets in Section 10.11.

ki1l and raise Functions

The kill function sends a signal to a process or a group of processes. The raise
function allows a process to send a signal to itself.

raise was originally defined by ISO C. POSIX.1 includes it to align itself with the ISO C
standard, but POSIX.1 extends the specification of raise to deal with threads (we discuss how
threads interact with signals in Section 12.8). Since ISO C does not deal with multiple
processes, it could not define a function, such as kill, that requires a process ID argument.

312 Signals Chapter 10

#include <signal.h> Af—wv«]‘

int kill(pid t pid, int signo) ; 1
int raise(int signo) ;

Both return: 0 if OK, -1 on error J

The call
raise(signo) ;

is equivalent to the call
kill(getpid(), signo);

There are four different conditions for the pid argument to ki11.

pid >0 The signal is sent to the process whose process ID is pid.

pid == The signal is sent to all processes whose process group ID equals the
process group ID of the sender and for which the sender has permission
to send the signal. Note that the term all processes excludes an
implementation-defined set of system processes. For most UNIX
systems, this set of system processes includes the kernel processes and
init (pid 1).

pid < 0 The signal is sent to all processes whose process group ID equals the
absolute value of pid and for which the sender has permission to send the
signal. Again, the set of all processes excludes certain system processes,
as described earlier.

pid == -1 The signal is sent to all processes on the system for which the sender has
permission to send the signal. As before, the set of processes excludes
certain system processes.

As we’ve mentioned, a process needs permission to send a signal to another
process. The superuser can send a signal to any process. For other users, the basic rule
is that the real or effective user ID of the sender has to equal the real or effective user ID
of the receiver. If the implementation supports _POSIX_SAVED .IDS (as POSIX.1 now
requires), the saved set-user-ID of the receiver is checked instead of its effective user ID.
There is also one special case for the permission testing: if the signal being sent is
SIGCONT, a process can send it to any other process in the same session.

POSIX.1 defines signal number 0 as the null signal. If the signo argument is 0, then
the normal error checking is performed by kill, but no signal is sent. This is often
used to determine if a specific process still exists. If we send the process the null signal
and it doesn’t exist, ki1l returns —1 and errno is set to ESRCH. Be aware, however,
that UNIX systems recycle process IDs after some amount of time, so the existence of a
process with a given process ID does not mean that it's the process that you think it is.

Also understand that the test for process existence is not atomic. By the time that
kill returns the answer to the caller, the process in question might have exited, so the
answer is of limited value.

Section 10.10 alarm and pause Functions 313

If the call to ki1l causes the signal to be generated for the calling process and if the
signal is not blocked, either signo or some other pending, unblocked signal is delivered
to the process before kill returns. (Additional conditions occur with threads; see
Section 12.8 for more information.)

10.10 alarm and pause Functions

The alarm function allows us to set a timer that will expire at a specified time in the
future. When the timer expires, the SIGALRM signal is generated. If we ignore or don’t
catch this signal, its default action is to terminate the process.

#include <unistd.h>
unsigned int alarm(unsigned int seconds) ;

Returns: 0 or number of seconds until previously set alarm

The seconds value is the number of clock seconds in the future when the signal should
be generated. Be aware that when that time occurs, the signal is generated by the
kernel, but there could be additional time before the process gets control to handle the
signal, because of processor scheduling delays.

Earlier UNIX System implementations warned that the signal could also be sent up to 1 second
early. POSIX.1 does not allow this.

There is only one of these alarm clocks per process. If, when we call alarm, a
previously registered alarm clock for the process has not yet expired, the number of
seconds left for that alarm clock is returned as the value of this function. That
previously registered alarm clock is replaced by the new value.

If a previously registered alarm clock for the process has not yet expired and if the
seconds value is 0, the previous alarm clock is canceled. The number of seconds left for
that previous alarm clock is still returned as the value of the function.

Although the default action for SIGALRM is to terminate the process, most processes
that use an alarm clock catch this signal. If the process then wants to terminate, it can
perform whatever cleanup is required before terminating. If we intend to catch
SIGALRM, we need to be careful to install its signal handler before calling alarm. If we
call alarm first and are sent SIGALRM before we can install the signal handler, our
process will terminate.

The pause function suspends the calling process until #signal is caught.

#include <unistd.h>
int pause (void) ;

Returns: -1 with errno set to EINTR

The only time pause returns is if a signal handler is executed and that handler returns.
In that case, pause returns —1 with errno set to EINTR.

314 Signals

Chapter 10

Exampie

Using alarm and pause, we can put a process to sleep for a specified amount of time.
The sleepl function in Figure 10.7 appears to do this (but it has problems, as we shall
see shortly).

#include <signal.h>
#include <unistd.h>

static void
sig_alrm(int signo)

/* nothing to do, just return to wake up the pause */

}

unsigned int
sleepl (unsigned int nsecs)

{

if (signal (SIGALRM, sig alrm) == SIG_ERR)
return(nsecs) ;
alarm(nsecs) ; /* start the timer */
pause () ; /* next caught signal wakes us up */
return{alarm(0)) ; /* turn off timer, return unslept time */

Figure 10.7 Simple, incomplete implementation of s1eep

This function looks like the s1eep function, which we describe in Section 10.19, but this
simple implementation has three problems.

1.

If the caller already has an alarm set, that alarm is erased by the first call to
alarm. We can correct this by looking at the return value from the first call to
alarm. If the number of seconds until some previously set alarm is less than
the argument, then we should wait only until the previously set alarm expires.
If the previously set alarm will go off after ours, then before returning we
should reset this alarm to occur at its designated time in the future.

We have modified the disposition for STGALRM. If we're writing a function for
others to call, we should save the disposition when we're called and restore it
when we're done. We can correct this by saving the return value from signal
and resetting the disposition before we return.

There is a race condition between the first call to alarm and the call to pause.
On a busy system, it’s possible for the alarm to go off and the signal handler to
be called before we call pause. If that happens, the caller is suspended forever
in the call to pause (assuming that some other signal isn’t caught).

Earlier implementations of sleep looked like our program, with problems 1 and 2
corrected as described. There are two ways to correct problem 3. The first uses
setjmp, which we show in the next example. The other uses sigprocmask and
sigsuspend, and we describe it in Section 10.19. O

Section 10.10 alarm and pause Functions 315

Example

The SVR2 implementation of sleep used setjmp and longjmp (Section 7.10) to avoid
the race condition described in problem 3 of the previous example. A simple version of
this function, called sleep2, is shown in Figure 10.8. (To reduce the size of this
example, we don't handle problems 1 and 2 described earlier.)

#include <setjmp.h>
#include <gignal.h>
#include <unistd.h>

static jmp buf env_alrm;

static void
sig_alrm(int signo)

{
}

unsigned int
sleep2 (unsigned int nsecs)

{

longjmp (env_alrm, 1);

if (signal (SIGALRM, sig alrm) == SIG_ERR)
return(nsecs) ;
if (setjmp(env_alrm) == 0) {
alarm(nsecs) ; /* start the timer */
pause () ; /* next caught signal wakes us up */
}
return{alarm(0)) ; /* turn off timer, return unslept time */

Figure 10.8 Another (imperfect) implementation of sleep

The sleep2 function avoids the race condition from Figure 10.7. Even if the pause is
never executed, the sleep2 function returns when the SIGALRM occurs.

There is, however, another subtle problem with the sleep2 function that involves
its interaction with other signals. If the STGALRM interrupts some other signal handler,
when we call longjmp, we abort the other signal handler. Figure 10.9 shows this
scenario. The loop in the SIGINT handler was written so that it executes for longer
than 5 seconds on one of the systems used by the author. We simply want it to execute
longer than the argument to sleep2. The integer k is declared volatile to prevent
an optimizing compiler from discarding the loop. Executing the program shown in
Figure 10.9 gives us

$./a.out

~? we type the interrupt character

sig_int starting

sleep2 returned: 0
We can see that the longjmp from the sleep2 function aborted the other signal
handler, sig_int, even though it wasn't finished. This is what you'll encounter if you
mix the SVR2 s1eep function with other signal handling. See Exercise 10.3. D

316

Signals

Chapter 10

#include "apue.h"

unsigned int sleep2 (unsigned int);
static void sig_int (int);

int
main(void)

{

unsigned int unslept;

if (signal (SIGINT, sig_int) == SIG_ERR)
err_sys("signal (SIGINT) error");

unslept = sleep2(5);
printf ("sleep2 returned: %u\n", unslept);
exit (0);

}

static void

sig_int (int signo)

{
int i, 3
volatile int k;

/*

* Tune these loops to run for more than 5 seconds

* on whatever system this test program is run.

*/
printf("\nsig_int starting\n");

for (i = 0; 1 < 300000; i++)

for (j = 0; j < 4000; j++)
k += i * j;

printf("sig_int finished\n");

Figure 10.9 Calling sleep2 from a program that catches other signals

The purpose of these two examples, the sleepl and sleep2 functions, is to show
the pitfalls in dealing naively with signals. The following sections will show ways
around all these problems, so we can handle signals reliably, without interfering with

other pieces of code.

Example

A common use for alarm, in addition to implementing the s1eep function, is to put an
upper time limit on operations that can block. For example, if we have a read
operation on a device that can block (a “slow” device, as described in Section 10.5), we
might want the read to time out after some amount of time. The program in
Figure 10.10 does this, reading one line from standard input and writing it to standard

output.

Section 10.10 alarm and pause Functions 317

#include "apue.h"
static void sig_alrm(int);
int

main{(void)

{

int n;
char line [MAXLINE] ;
if (signal (SIGALRM, sig_alrm) == SIG_ERR)

err_sys("signal(SIGALRM) error") ;

alarm(10);

if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0)
err sys("read error");

alarm(0) ;

write(STDOUT_FILENO, line, n);
exit (0);

}

static void
sig alrm(int signo)

/* nothing to do, just return to interrupt the read */

Figure 10.10 Calling read with a timeout

This sequence of code is common in UNIX applications, but this program has two
problems.

1. The program in Figure 10.10 has one of the same flaws that we described in
Figure 10.7: a race condition between the first call to alarm and the call to read.
If the kernel blocks the process between these two function calls for longer than
the alarm period, the read could block forever. Most operations of this type use
a long alarm period, such as a minute or more, making this unlikely;
nevertheless, it is a race condition.

2. If system calls are automatically restarted, the read is not interrupted when the
SIGALRM signal handler returns. In this case, the timeout does nothing.

Here, we specifically want a slow system call to be interrupted. POSIX.1 does not give
us a portable way to do this; however, the XSI extension in the Single UNIX
Specification does. We'll discuss this more in Section 10.14. o

Example

Let's redo the preceding example using longjmp. This way, we don’t need to worry
about whether a slow system call is interrupted.

318

Signals Chapter 10

10.11

#include "apue.h"
#include <setjmp.h>

static void sig_alrm(int) ;
static jmp_buf env_alrm;

int
main(void)
{
int n,;
char line [MAXLINE] ;

if (signal (SIGALRM, sig_alrm) == SIG_ERR)
err_sys("signal (SIGALRM) error");

if (setjmp(env_alrm) != 0)
err_quit ("read timeout");

alarm(10) ;

if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0)
err_sys("read error");

alarm(0) ;

write (STDOUT_FILENO, line, n);
exit (0);

}

static void
sig_alrm(int signo)

{

longjmp (env_alrm, 1);

Figure 10.11 Calling read with a timeout, using longjmp

This version works as expected, regardless of whether the system restarts interrupted
system calls. Realize, however, that we still have the problem of interactions with other
signal handlers, as in Figure 10.8. C

If we want to set a time limit on an 1/0 operation, we need to use longjmp, as
shown previously, realizing its possible interaction with other signal handlers. Another
option is to use the select or pol1 functions, described in Sections 14.5.1 and 14.5.2.

Signal Sets

We need a data type to represent multiple signals—a signal set. We'll use this with such
functions as sigprocmask (in the next section) to tell the kernel not to allow any of the
signals in the set to occur. As we mentioned earlier, the number of different signals can

Section 10.11 Signal Sets 319

exceed the number of bits in an integer, so in general, we can’t use an integer to
represent the set with one bit per signal. POSIX.1 defines the data type sigset_t to
contain a signal set and the following five functions to manipulate signal sets.

T #include <signal.h>]
int sigemptyset (sigset_t *set);
int sigfillset (sigset_t *sef);
int sigaddset (sigset_t *sef, int signo) ;
int sigdelset (sigset_t *set, int signo) ;
All four return: 0 if OK, -1 on error

int sigismember (const sigset_t *set, int signo) ;

Returns: 1 if true, 0 if false, -1 on error J

The function sigemptyset initializes the signal set pointed to by set so that all signals
are excluded. The function sigfillset initializes the signal set so that all signals are
included. All applications have to call either sigemptyset or sigfillset once for
each signal set, before using the signal set, because we cannot assume that the C
initialization for external and static variables (0) corresponds to the implementation of
signal sets on a given system.

Once we have initialized a signal set, we can add and delete specific signals in the
set. The function sigaddset adds a single signal to an existing set, and sigdelset
removes a single signal from a set. In all the functions that take a signal set as an
argument, we always pass the address of the signal set as the argument.

Implementation

If the implementation has fewer signals than bits in an integer, a signal set can be
implemented using one bit per signal. For the remainder of this section, assume that an
implementation has 31 signals and 32-bit integers. The sigemptyset function zeros
the integer, and the sigfillset function turns on all the bits in the integer. These two
functions can be implemented as macros in the <signal. h> header:

0)
~(sigset_t)0, 0)

#define sigemptyset (ptr) (*(ptr)
#define sigfillset (ptr) (* (ptr)

[

Note that sigfillset must return 0, in addition to setting all the bits on in the signal
set, so we use C’s comma operator, which returns the value after the comma as the
value of the expression.

Using this implementation, sigaddset turns ona single bit and sigdelset turns
off a single bit; sigismember tests a certain bit. Since no signal is ever numbered 0, we
subtract 1 from the signal number to obtain the bit to manipulate. Figure 10.12 shows
implementations of these functions.

320 Signals Chapter 10
#include <signal.h>
#include <errno.h>
/* <signal.h> usually defines NSIG to include signal number 0 */
#define SIGBAD (signo) ((signo) <= 0 || (signo) >= NSIG)
int
sigaddset (sigset_t *set, int signo)
{
if (SIGBAD(signo)) { errno = EINVAL; return(-1); }
set |= 1 << (signo - 1); / turn bit on */
return(0) ;
}
int
sigdelset (sigset_t *set, int signo)
{.
if (SIGBAD(signo)) { errno = EINVAL; return(-1); }
set &= " (1 << (signo - 1)); / turn bit off */
return(0) ;
}
int
sigismember (const sigset_t *set, int signo)
{ .
if (SIGBAD(signo)) { errno = EINVAL; return(-1); }
return((*set & (1 << (signo - 1))) != 0);
}
Figure 10.12 An implementation of sigaddset, sigdelset, and sigismember
We might be tempted to implement these three functions as one-line macros in the
<signal.h> header, but POSIX.1 requires us to check the signal number argument for
validity and to set errno if it is invalid. This is more difficult to do in a macro than in a
function.
10.12 sigprocmask Function

Recall from Section 10.8 that the signal mask of a process is the set of signals currently
blocked from delivery to that process. A process can examine its signal mask, change its
signal mask, or perform both operations in one step by calling the following function.

#include <signal.h>

int sigprocmask (int how, const sigset _t *restrict set,
sigset_t *restrict oset) ;

Returns: 0 if OK, ~1 on error

Section 10.12 sigprocmask Function 321

First, if oset is a non-null pointer, the current signal mask for the process is returned
through oset.

Second, if set is a non-null pointer, the how argument indicates how the current
signal mask is modified. Figure 10.13 describes the possible values for how.
SIG BLOCK is an inclusive-OR operation, whereas SIG_SETMASK is an assignment.
Note that SIGKILL and SIGSTOP can’t be blocked.

how Description

SIG_BLOCK The new signal mask for the process is the union of its current signal mask
and the signal set pointed to by set. That is, set contains the additional
signals that we want to block.

S1G_UNBLOCK | The new signal mask for the process is the intersection of its current signal
mask and the complement of the signal set pointed to by set. That s, set
contains the signals that we want to unblock.

SIG_SETMASK | The new signal mask for the process is replaced by the value of the signal
set pointed to by sef.

Figure 10.13 Ways to change current signal mask using sigprocmask

If set is a null pointer, the signal mask of the process is not changed, and how is
ignored.

After calling sigprocmask, if any unblocked signals are pending, at least one of
these signals is delivered to the process before sigprocmask returns.

The sigprocmask function is defined only for single-threaded processes. A separate function
is provided to manipulate a thread's signal mask in a multithreaded process. We'll discuss this
in Section 12.8.

Example

Figure 10.14 shows a function that prints the names of the signals in the signal mask of
the calling process. We call this function from the programs shown in Figure 10.20 and
Figure 10.22.

#include "apue.h"
#include <errno.h>

void
pr_mask (const char *str)
sigset_t sigset;
int errno_save;
errno_save = errno; /* we can be called by signal handlers */

if (sigprocmask (0, NULL, &sigset) < 0)
err_sys (" sigprocmask erroxr") ;

printf ("$s", str);

322 Signals Chapter 10

if (sigismember (&sigset, SIGINT)) printf ("SIGINT ") ;

if (sigismember (&sigset, SIGQUIT)) printf ("SIGQUIT ") ;
if (sigismember (&sigset, SIGUSR1)) printf ("SIGUSR1 ") ;
if (sigismember (&sigset, SIGALRM)) printf ("SIGALRM ") ;

/* remaining signals can go here */

printf ("\n");
€rrno = errno_save;

Figure 10.14 Print the signal mask for the process
To save space, we don't test the signal mask for every signal that we listed in
Figure 10.1. (See Exercise 10.9.) a
10.13 sigpending Function
The sigpending function returns the set of signals that are blocked from delivery and

currently pending for the calling process. The set of signals is returned through the set
argument.

#include <signal.h>)
i,
int sigpending(sigset_t *Sf);

Returns: 0 if OK, -1 on error

Example

Figure 10.15 shows many of the signal features that we’ve been describing.

#include "apue.h"
static void sig quit (int);

int
main (void)

{

sigset_t newmask, oldmask, pendmask;

if (signal(SIGQUIT, sig_quit) == SIG_ERR)
err_sys("can’t catch SIGQUIT");

/*
* Block SIGQUIT and save current signal mask.
*/

sigemptyset (&newmask) ;

sigaddset (&newmask, SIGQUIT) ;

Section 10.13 sigpending Function 323

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
err sys("SIG_BLOCK error");

sleep(5); /* SIGQUIT here will remain pending */

if (sigpending(&pendmask) < 0)
err_sys("sigpending error");

if (sigismember (&pendmask, SIGQUIT))
printf ("\nSIGQUIT pending\n");

/*
* Reset signal mask which unblocks SIGQUIT.
*/
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG_SETMASK error");
printf ("SIGQUIT unblocked\n") ;

sleep(5); /* SIGQUIT here will terminate with core file */
exit (0);

}

static void
sig_quit (int signo)
{
printf ("caught SIGQUIT\n");
if (signal (SIGQUIT, SIG_DFL) == SIG_ERR)
err_sys("can't reset SIGQUIT") ;

Figure 10.15 Example of signal sets and sigprocmask

The process blocks SIGQULT, saving its current signal mask (to reset later), and then
goes to sleep for 5 seconds. Any occurrence of the quit signal during this period is
blocked and won’t be delivered until the signal is unblocked. At the end of the
5-second sleep, we check whether the signal is pending and unblock the signal.

Note that we saved the old mask when we blocked the signal. To unblock the
signal, we did a SIG_SETMASK of the old mask. Alternatively, we could SIG_UNBLOCK
only the signal that we had blocked. Be aware, however, if we write a function that can
be called by others and if we need to block a signal in our function, we can’t use
SIG_UNBLOCK to unblock the signal. In this case, we have to use SIG_SETMASK and
reset the signal mask to its prior value, because it’'s possible that the caller had
specifically blocked this signal before calling our function. We'll see an example of this
in the system function in Section 10.18.

If we generate the quit signal during this sleep period, the signal is now pending
and unblocked, so it is delivered before sigprocmask returns. We'll see this occur
because the print f in the signal handler is output before the printf that follows the
call to sigprocmask.

The process then goes to sleep for another 5 seconds. If we generate the quit signal
during this sleep period, the signal should terminate the process, since we reset the

324 Signals Chapter 10
handling of the signal to its default when we caught it. In the following output, the
terminal prints ~\ when we input Control-backslash, the terminal quit character:

$./a.out

“\ gencrate signal once (before 5 seconds are up)

SIGQUIT pending after return from sleep

caught SIGQUIT in signal handler

SIGQUIT unblocked qﬂernﬁurnﬁmnlsigprocmask

“\Quit (coredump) generate signal again

$./a.out

I U N N N A N N N NN generate signal 10 times (before 5 seconds are up)

SIGQUIT pending

caught SIGQUIT signal is generated only once

SIGQUIT unblocked

“\Quit (coredump) generate signal again
The message Quit (coredump) is printed by the shell when it sees that its child
terminated abnormally. Note that when we run the program the second time, we
generate the quit signal ten times while the process is asleep, yet the signal is delivered
only once to the process when it’s unblocked. This demonstrates that signals are not
queued on this system. 0

10.14 sigaction Function

The sigaction function allows us to examine or modify (or both) the action associated
with a particular signal. This function supersedes the signal function from earlier
releases of the UNIX System. Indeed, at the end of this section, we show an
implementation of signal using sigaction.

#include <signal.h>

int sigaction(int signo, const struct sigaction *restrict act,
struct sigaction *restrict oact) ;

Returns: 0 if OK, -1 on error J

The argument signo is the signal number whose action we are examining or modifying.
If the act pointer is non-null, we are modifying the action. If the oact pointer is non-null,
the system returns the previous action for the signal through the oact pointer. This
function uses the following structure:

struct sigaction {

void (*sa_handler) (int); /* addr of signal handler, */

/* or SIG_IGN, or SIG DFL */
sigset_t sa_mask; /* additional signals to block */
int sa_flags; /* signal options, Figure 10.16 */

/* alternate handler */
void (*sa_sigaction) (int, siginfo_t *, void *);

Section 10.14 sigaction Function 325

When changing the action for a signal, if the sa_handler field contains the
address of a signal-catching function (as opposed to the constants SIG_IGN or
SIG_DFL), then the sa_mask field specifies a set of signals that are added to the signal
mask of the process before the signal-catching function is called. If and when the
signal-catching function returns, the signal mask of the process is reset to its previous
value. This way, we are able to block certain signals whenever a signal handler is
invoked. The operating system includes the signal being delivered in the signal mask
when the handler is invoked. Hence, we are guaranteed that whenever we are
processing a given signal, another occurrence of that same signal is blocked until we're
finished processing the first occurrence. Recall from Section 10.8 that additional
occurrences of the same signal are usually not queued. If the signal occurs five times
while it is blocked, when we unblock the signal, the signal-handling function for that
signal will usually be invoked only one time.

Once we install an action for a given signal, that action remains installed until we
explicitly change it by calling sigaction. Unlike earlier systems with their unreliable
signals, POSIX.1 requires that a signal handler remain installed until explicitly changed.

The sa_flags field of the act structure specifies various options for the handling of
this signal. Figure 10.16 details the meaning of these options when set. The SUS
column contains ¢ if the flag is defined as part of the base POSIX.1 specification, and
XSI if it is defined as an XSI extension to the base.

The sa_sigaction field is an alternate signal handler used when the
SA SIGINFO flag is used with sigaction. Implementations might use the same
storage for both the sa_sigaction field and the sa_handler field, so applications
can use only one of these fields at a time.

Normally, the signal handler is called as

void handler (int signo) ;
but if the SA_SIGINFO flag is set, the signal handler is called as
void handler (int signo, siginfo_t *info, void *context);

The siginfo_t structure contains information about why the signal was
generated. An example of what it might look like is shown below. All
POSIX.1-compliant implementations must include at least the si_signo and si_code
members. Additionally, implementations that are XSI compliant contain at least the

following fields:
struct siginfo {
int si_signo; /* signal number */
int si_errno; /* if nonzero, errno value from <errno.hs */
int si_code; /* additional info (depends on signal) */
pid t si_pid; /* sending process ID */
uid_t si_uid; /* sending process real user ID */
void *si_addr; /* address that caused the fault */
int si_status; /* exit value or signal number */
long si_band; /* band number for SIGPOLL */

/

/* possibly other fields also */

326

Signals

Chapter 10

Option

SUS| 521

2422

103

FreeBSD Linux Mac OS X Solaris

9

Description

SA_INTERRUPT

SA_NOCLDSTOP

SA_NOCLDWAIT

SA_NODEFER

SA_ONSTACK

SA_RESETHAND

SA_RESTART

SA_SIGINFO

XSI .

XSI .

XSI .

XSI .

XSI .

System calls interrupted by this signal are not
automatically restarted (the XSI default for
sigaction). See Section 10.5 for more
information.

If signo is SIGCHLD, do not generate this signal
when a child process stops (job control). This
signal is still generated, of course, when a child
terminates (but see the SA_NOCLDWAIT option
below). As an XSI extension, SIGCHLD won'’t be
sent when a stopped child continues if this flag
is set.

If signo is SIGCHLD, this option prevents the
system from creating zombie processes when
children of the calling process terminate. If it
subsequently calls wait, the calling process
blocks until all its child processes have
terminated and then returns -1 with errno set
to ECHILD. (Recall Section 10.7.)

When this signal is caught, the signal is not
automatically blocked by the system while the
signal-catching function executes (unless the
signal is also included in sa_mask). Note that
this type of operation corresponds to the earlier
unreliable signals.

If an alternate stack has been declared with
sigaltstack(2), this signal is delivered to the
process on the alternate stack.

The disposition for this signal is reset to
SIG_DFL, and the SA_SIGINFO flag is cleared
on entry to the signal-catching function. Note
that this type of operation corresponds to the
earlier unreliable signals. The disposition for
the two signals SIGILL and SIGTRAP can't be
reset automatically, however. Setting this flag
causes sigaction to behave as if SA_NODEFER
is also set.

System calls interrupted by this signal are
automatically restarted. (Refer to Section 10.5.)

This option provides additional information to a
signal handler: a pointer to a siginfo structure
and a pointer to an identifier for the process
context.

Figure 10.16 Option flags (sa_£f1ags) for the handling of each signal

Section 10.14 sigaction Function 327

Figure 10.17 shows values of si_code for various signals, as defined by the Single
~ UNIX Specification. Note that implementations may define additional code values.

Signal Code Reason
ILL_ILLOPC illegal opcode
ILL_ ILLOPN illegal operand
ILL_ILLADR illegal addressing mode
SIGILL ILL_ ILLTRP illc?g.al trap
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL COPROC COprocessor error
ILL_BADSTK internal stack error
FPE_INTDIV integer divide by zero
FPE_INTOVF integer overflow
FPE_FLTDIV floating-point divide by zero
FPE_FLTOVF floating-point overflow
SIGFPE . .
FPE_FLTUND floating-point underflow
FPE_FLTRES floating-point inexact result
FPE_FLTINV invalid floating-point operation
- FPE_FLTSUB subscript out of range
STGSEGY SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object
BUS_ADRALN invalid address alignment
SIGBUS BUS_ADRERR nonexistent physical address
BUS_OBJERR object-specific hardware error
STIGTRAD TRAP_BRKPT process breakpoint trap
TRAP_TRACE process trace trap
CLD_EXITED child has exited
CLD_KILLED child has terminated abnormally (no core)
CLD_DUMPED child has terminated abnormally with core
SIGCHLD .
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTINUED | stopped child has continued
POLL_IN data can be read
POLL_OUT data can be written
STGPOLL POLL_MSG input message available
POLL_ERR 1/0 error
POLL_PRI high-priority message available
POLL_HUP device disconnected
SI_USER signal sent by kill
SI_QUEUE signal sent by sigqueue (real-time extension)
Any SI_TIMER expiration of a timer set by timer_settime (real-time extension)
SI_ASYNCIO completion of asynchronous 1/0 request (real-time extension)
SI_MESGQ arrival of a message on a message queue (real-time extension)

Figure 10.17 siginfo_t code values

If the signal is SIGCHLD, then the si_pid, si_status, and si_uid field will be
set. If the signal is SIGILL or SIGSEGV, then the si_addr contains the address
responsible for the fault, although the address might not be accurate. If the signal is
SIGPOLL, then the si_band field will contain the priority band for STREAMS

328 Signals Chapter 10

messages that generate the POLL_IN, POLL_OUT, or POLL_MSG events. (For a complete
discussion of priority bands, see Rago [1993].) The si_errno field contains the error
number corresponding to the condition that caused the signal to be generated, although
its use is implementation defined.

The context argument to the signal handler is a typeless pointer that can be cast to a
ucontext_t structure identifying the process context at the time of signal delivery.

When an implementation supports the real-time signal extensions, signal handlers established
with the SA_SIGINFO flag will result in signals being queued reliably. A separate range of
reserved signals is available for real-time application use. The siginfo structure can contain
application-specific data if the signal is generated by sigqueue. We do not discuss the
real-time extensions further. Refer to Gallmeister [1995] for more details.

Example—signal Function

Let's now implement the signal function using sigaction. This is what many
platforms do (and what a note in the POSIX.1 Rationale states was the intent of POSIX).
Systems with binary compatibility constraints, on the other hand, might provide a
signal function that supports the older, unreliable-signal semantics. Unless you
specifically require these older, unreliable semantics (for backward compatibility), you
should use the following implementation of signal or call sigaction directly. (As
you might guess, an implementation of signal with the old semantics could call
sigaction specifying SA_RESETHAND and SA_NODEFER.) All the examples in this
text that call signal call the function shown in Figure 10.18.

#include "apue.h"

/* Reliable version of signal(), using POSIX sigaction(). */
Sigfunc *
signal (int signo, Sigfunc *func)

{

struct sigaction act, oact;

act.sa_handler = func;
sigemptyset (&act.sa_mask) ;
act.sa_flags = 0;
if (signo == SIGALRM) {
#ifdef SA INTERRUPT
act.sa_flags |= SA_INTERRUPT;
#endif
} else {
#ifdef SA RESTART
act.sa_flags |= SA_RESTART;
#endif
}
if (sigaction(signo, &act, &oact) < 0)
return (SIG_ERR) ;
return(oact.sa_handler) ;

Figure 10.18 An implementation of signal using sigaction

Section 10.15 sigsetjmp and siglongjmp Functions 329

Note that we must use sigemptyset to initialize the sa_mask member of the
structure. We're not guaranteed that

act.sa_mask = 0;

does the same thing.

We intentionally try to set the SA_RESTART flag for all signals other than SIGALRM,
so that any system call interrupted by these other signals is automatically restarted. The
reason we don’t want SIGALRM restarted is to allow us to set a timeout for 1/O
operations. (Recall the discussion of Figure 10.10.)

Some older systems, such as SunOS, define the SA_INTERRUPT flag. These systems
restart interrupted system calls by default, so specifying this flag causes system calls to
be interrupted. Linux defines the SA_INTERRUPT flag for compatibility with
applications that use it, but the default is to not restart system calls when the signal
handler is installed with sigaction. The XSI extension of the Single UNIX
Specification specifies that the sigaction function not restart interrupted system calls
unless the SA_RESTART flag is specified. 0

Example—signal_intr Function

10.15

Figure 10.19 shows a version of the signal function that tries to prevent any
interrupted system calls from being restarted.

#include "apue.h"

Sigfunc *
signal_intr(int signo, Sigfunc *func)

{

struct sigaction act, oact;

act.sa_handler = func;
sigemptyset (&act.sa_mask);
act.sa_flags = 0;

#ifdef SA_INTERRUPT
act.sa_flags |= SA_INTERRUPT;

#endif
if (sigaction(signo, &act, &oact) < 0)

return (SIG_ERR) ;

return(oact.sa_handler) ;

Figure 10.19 The signal_intr function

For improved portability, we specify the SA_INTERRUPT flag, if defined by the system,
to prevent interrupted system calls from being restarted. 0
sigsetjmp and siglongjmp Functions

In Section 7.10, we described the setjmp and longjmp functions, which can be used
for nonlocal branching. The longjmp function is often called from a signal handler to

330 Signals Chapter 10

return to the main loop of a program, instead of returning from the handler. We saw
this in Figures 10.8 and 10.11.

There is a-problem in calling longjmp, however. When a signal is caught, the
signal-catching function is entered with the current signal automatically being added to
the signal mask of the process. This prevents subsequent occurrences of that signal
from interrupting the signal handler. If we longjmp out of the signal handler, what
happens to the signal mask for the process?

Under FreeBSD 5.2.1 and Mac OS X 10.3, setjmp and longjmp save and restore the signal
mask. Linux 2.4.22 and Solaris 9, however, do not do this. FreeBSD and Mac OS X provide the
functions _setjmp and _longjmp, which do not save and restore the signal mask.

To allow either form of behavior, POSIX.1 does not specify the effect of set jmp and
longjmp on signal masks. Instead, two new functions, sigsetjmp and siglongjmp,
are defined by POSIX.1. These two functions should always be used when branching
from a signal handler.

#include <setjmp.h>
int sigsetjmp(sigjmp_buf env, int savemask) ;
Returns: 0 if called directly, nonzero if returning from a call to siglongjmp

void siglongjmp (sigjmp buf env, int wal);

The only difference between these functions and the setjmp and 1ongjmp functions is
that sigsetjmp has an additional argument. If savemask is nonzero, then sigsetjmp
also saves the current signal mask of the process in env. When siglongjmp is called, if
the env argument was saved by a call to sigsetjmp with a nonzero savemask, then
siglongjmp restores the saved signal mask.

Example

The program in Figure 10.20 demonstrates how the signal mask that is installed by the
system when a signal handler is invoked automatically includes the signal being
caught. The program also illustrates the use of the sigsetjmp and siglongjmp
functions.

#include "apue.h"
#include <setjmp.h>
#include <time.h>

static void sig_usrl(int), sig_alrm(int);
static. sigjmp_buf jmpbuf ;

static volatile sig atomic_t canjump;

int

main (void)

{

if (signal (SIGUSR1, sig_usrl) == SIG_ERR)
err_sys("signal (SIGUSR1) error");

Section 10.15 sigsetjmp and siglongjmp Functions 331

if (signal (SIGALRM, sig_alrm) == SIG_ERR)
err_sys("signal(SIGALRM) errox") ;
pr_mask ("starting main: "); /* Figure 10.14 */

if (sigsetimp(jmpbuf, 1)) {
pr_mask ("ending main: ");
exit (0);

}

canjump = 1; /* now sigsetjmp() is OK */

for (; ;)
pause () ;

}

static void
sig usrl (int signo)

{
time_t starttime;
if (canjump == 0)
return; /* unexpected signal, ignore */
pr_mask("starting sig usrl: ");
alarm(3); /* SIGALRM in 3 seconds */
starttime = time (NULL);
for (; i) /* busy wait for 5 seconds */
if (time (NULL) > starttime + 5)
break;
pr_mask("finishing sig usrl: ");
canjump = 0;
siglongjmp (jmpbuf, 1); /* jump back to main, don’t return */
}

static void
sig_alrm(int signo)

{
}

pr_mask ("in sig_alrm: ");

Figure 10.20 Example of signal masks, sigsetjmp, and siglongjmp

This program demonstrates another technique that should be used whenever
siglongjmp is called from a signal handler. We set the variable canjump to a nonzero
value only after we've called sigsetjmp. This variable is also examined in the signal
handler, and siglongjmp is called only if the flag canjump is nonzero. This provides
protection against the signal handler being called at some earlier or later time, when the
jump buffer isn’t initialized by sigsetjmp. (In this trivial program, we terminate
quickly after the siglongjmp, but in larger programs, the signal handler may remain
installed long after the siglongjmp.) Providing this type of protection usually isn't
required with longjmp in normal C code (as opposed to a signal handler). Since a
signal can occur at any time, however, we need the added protection in a signal handler.

332 Signals Chapter 10

Here, we use the data type sig_atomic_t, which is defined by the ISO C standard
to be the type of variable that can be written without being interrupted. By this we
mean that a variable of this type should not extend across page boundaries on a system
with virtual memory and can be accessed with a single machine instruction, for
example. We always include the ISO type qualifier volatile for these data types too,
since the variable is being accessed by two different threads of control: the main
function and the asynchronously executing signal handler. Figure 10.21 shows a time
line for this program.

main

signal ()
signal ()
pr_mask ()
sigsetjmp ()
pause ()
SIGUSRI1 delivered N
% sig usrl
pr_mask ()
alarm()
time ()
time ()
time ()
| SIGALRM delivered @
pr_mask ()
:_= return from signal handler return()
pr _mask ()
sigsetjmp () <#————— siglongjmp()
pr_mask ()
exit ()

Figure 10.21 Time line for example program handling two signals

We can divide Figure 10.21 into three parts: the left part (corresponding to main), the
center part (sig_usrl), and the right part (sig_alrm). While the process is executing
in the left part, its signal mask is 0 (no signals are blocked). While executing in the
center part, its signal mask is SIGUSR1. While executing in the right part, its signal
mask is SIGUSR1 | STGALRM.

Let’s examine the output when the program in Figure 10.20 is executed:

$./a.out & start process in background

starting main:

(1] 531 the job-control shell prints its process ID
$ kill -USR1 531 send the process SIGUSR1

starting sig usrl: SIGUSR1
$ in sig_alrm: SIGUSR1 SIGALRM
finishing sig_usrl: SIGUSR1
ending main:
just press RETURN
[1] + Done ./a.out &

Section 10.16 sigsuspend Function 333

10.16

The output is as we expect: when a signal handler is invoked, the signal being caught is
added to the current signal mask of the process. The original mask is restored when the
signal handler returns. Also, siglongjmp restores the signal mask that was saved by
sigsetjmp.

If we change the program in Figure 10.20 so that the calls to sigsetjmp and
siglongjmp are replaced with calls to setjmp and longjmp on Linux (or _setjmp
and _longjmp on FreeBSD), the final line of output becomes

ending main: SIGUSR1

This means that the main function is executing with the SIGUSR1 signal blocked, after
the call to set jmp. This probably isn’t what we want. O

sigsuspend Function

We have seen how we can change the signal mask for a process to block and unblock
selected signals. We can use this technique to protect critical regions of code that we
don’t want interrupted by a signal. What if we want to unblock a signal and then
pause, waiting for the previously blocked signal to occur? Assuming that the signal is
SIGINT, the incorrect way to do this is

sigset_t newmask, oldmask;

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGINT) ;

/* block SIGINT and save current signal mask */
if (sigprocmask (SIG_BLOCK, gnewmask, &oldmask) < 0)
err_sys ("SIG_BLOCK error");

/* critical region of code */

/* reset signal mask, which unblocks SIGINT */
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");

/* window is open */
pause(); /* wait for signal to occur */

/* continue processing */

If the signal is sent to the process while it is blocked, the signal delivery will be deferred
until the signal is unblocked. To the application, this can look as if the signal occurs
between the unblocking and the pause (depending on how the kernel implements
signals). If this happens, or if the signal does occur between the unblocking and the
pause, we have a problem. Any occurrence of the signal in this window of time is lost
in the sense that we might not see the signal again, in which case the pause will block
indefinitely. This is another problem with the earlier unreliable signals.

To correct this problem, we need a way to both reset the signal mask and put the
process to sleep in a single atomic operation. This feature is ‘provided by the
sigsuspend function.

334 Signals Chapter 10

#include <signal.h>

!
[int sigsuspend(const sigset t *sigmask) ;

Returns: ~1 with errno set to EINTR

The signal mask of the process is set to the value pointed to by sigmask. Then the
process is suspended until a signal is caught or until a signal occurs that terminates the
process. If a signal is caught and if the signal handler returns, then sigsuspend
returns, and the signal mask of the process is set to its value before the call to
sigsuspend.

Note that there is no successful return from this function. If it returns to the caller, it
always returns —1 with errno set to EINTR (indicating an interrupted system call).

Example

Figure 10.22 shows the correct way to protect a critical region of code from a specific
signal.

#include "apue.h"
static void sig_intiint);

int
main{(void)
{

sigset_t newmask, oldmask, waitmask;
pr_mask ("program start: ");

if (signal (SIGINT, sig_int) == SIG_ERR)
err sys("signal (SIGINT) error"):;

sigemptyset (&waitmask) ;

sigaddset (&waitmask, SIGUSR1) ;

sigemptyset (&newmask) ;

sigaddset (&newmask, SIGINT) ;

/*
* Block SIGINT and save current signal mask.
*/
if (sigprocmask (SIG_BLOCK, &newmask, &oldmask) < 0)
err_sys("SIG_BLOCK error") ;

/*

* Critical region of code.

*/
pr_mask("in critical region: ");
/*

* Pause, allowing all signals except SIGUSR1.

Section 10.16

sigsuspend Function

335

}

*/
if (sigsuspend(&waitmask) != -1)
err_ sys ("sigsuspend error") ;

pr_mask ("after return from sigsuspend: ");

/*
* Reset signal mask which unblocks SIGINT.
*/
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");

/*
* And continue processing
*/

pr_mask ("program exit: ")

exit (0) ;

static void
sig_int (int signo)

{
}

pr_mask ("\nin sig_int: ");

Figure 10.22 Protecting a critical region from a signal

Note that when sigsuspend returns, it sets the signal mask to its value before the call.
In this example, the SIGINT signal will be blocked. We therefore reset the signal mask
to the value that we saved earlier (c1dmask).

Running the program from Figure 10.22 produces the following output:

$./a.out

program start:

in critical region: SIGINT

~? type the interrupt character
in sig_int: SIGINT SIGUSR1

after return from sigsuspend: SIGINT

program exit:

We added SIGUSR1 to the mask installed when we called sigsuspend so that when
signal handler ran, we could tell that the mask had actually changed. We can see

the

that when sigsuspend returns, it restores

Example

Another use of sigs

the

the signal mask to its value before the call. O

uspend is to wait for a signal handler to set a global variable. In

program shown in Figure 10.23, we catch both the interrupt signal and the quit
signal, but want to wake up the main routine only when the quit signal is caught.

336 Signals Chapter 10

#include "apue.h"
volatile sig_atomic t quitflag; /* set nonzero by signal handler */

static void
sig_int (int signo) /* one signal handler for SIGINT and SIGQUIT */

{
if (signo == SIGINT)
printf ("\ninterrupt\n");
else if (signo == SIGQUIT)
quitflag = 1; /* set flag for main loop */
}
int
main(void)
{
sigset_t newmask, oldmask, zeromask;
if (signal (SIGINT, sig_int) == SIG_ERR)
err_sys("signal (SIGINT) error");
if (signal (SIGQUIT, sig int) == SIG ERR)
err_sys("signal (SIGQUIT) error");
sigemptyset (&zeromask) ;
sigemptyset (&newmask) ;
sigaddset (&newmask, SIGQUIT) ;
/*
* Block SIGQUIT and save current signal mask.
*/
if (sigprocmask (SIG_BLOCK, &newmask, &oldmask) < 0)
err_sys("SIG_BLOCK error");
while (quitflag == 0)
sigsuspend (&zeromask) ;
/*
* SIGQUIT has been caught and is now blocked; do whatever.
*/
quitflag = 0;
/*
* Reset signal mask which unblocks SIGQUIT.
*/
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");
exit (0) ;
}

Figure 10.23 Using sigsuspend to wait for a global variable to be set

Section 10.16 sigsuspend Function 337
Sample output from this program is
$./a.out
°? type the interrupt character
interrupt
“? type the interrupt character again
interrupt
°? and again
interrupt
~? and again
interrupt
~? and again
interrupt
“? and again
interrupt
°? and again
interrupt
“\ § now terminate with quit character O

Example

For portability between non-POSIX systems that support ISO C, and POSIX.1 systems, the only
thing we should do within a signal handler is assign a value to a variable of type
sig_atomic_t, and nothing else. POSIX.1 goes further and specifies a list of functions that
are safe to call from within a signal handler (Figure 10.4), but if we do this, our code may not
run correctly on non-POSIX systems.

As another example of signals, we show how signals can be used to synchronize a
parent and child. Figure 10.24 shows implementations of the five routines TELL_WAIT,

TELL_PARENT, TELL_CHILD, WAIT PARENT, and WAIT_CHILD from Section 8.9.

#include "apue.h"

static volatile sig_atomic_t sigflag; /* set nonzero by sig handler */
static sigset_t newmask, oldmask, zeromask;

static void

sig_usr(int signo)

{
}

sigflag =

void

TELL_WAIT (void)

{

if (signal (SIGUSR1, sig_usr)
err_sys("signal(SIGUSRl)
if (signal (SIGUSR2, sig_usr)
err_sys ("signal (SIGUSR2)

sigemptyset (&zeromask) ;
sigemptyset (&newmask) ;

== SIG_ERR)
error") ;
== SIG_ERR)
erroxr") ;

/* one signal handler for SIGUSR1 and SIGUSR2 */

Signals

Chapter 10

sigaddset (&newmask, SIGUSR1) ;
sigaddset (&newmask, SIGUSR2) ;

/*

* Block SIGUSR1 and SIGUSR2, and save current signal mask.

*/
if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
err_sys("SIG_BLOCK error") ;

}

void
TELL_PARENT (pid_t pid)

{
}

void
WAIT_PARENT (void)

{

kill (pid, SIGUSR2); /* tell parent we’re done */

while (sigflag == 0)

sigsuspend (&zeromask); /* and wait for parent */
sigflag = 0;
/*
* Reset signal mask to original value.
*/

if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");

}

void
TELL_CHILD(pid_t pid)

{
}

void
WAIT CHILD(void)

{

kill(pid, SIGUSR1); /* tell child we’re done */

while (sigflag == 0)

sigsuspend (&zeromask); /* and wait for child */
sigflag = 0;
/*
* Reset signal mask to original value.
*/

if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");

Figure 10.24 Routines to allow a parent and child to synchronize

Section 10.16 sigsuspend Function 339

We use the two user-defined signals: SIGUSR1 is sent by the parent to the child, and
SIGUSR2 is sent by the child to the parent. In Figure 15.7, we show another
implementation of these five functions using pipes. O

The sigsuspend function is fine if we want to go to sleep while waiting for a
signal to occur (as we’ve shown in the previous two examples), but what if we want to
call other system functions while we're waiting? Unfortunately, this problem has no
bulletproof solution unless we use multiple threads and dedicate a separate thread to
handling signals, as we discuss in Section 12.8.

Without using threads, the best we can do is to set a global variable in the signal
handler when the signal occurs. For example, if we catch both SIGINT and SIGALRM
and install the signal handlers using the signal_intr function, the signals will
interrupt any slow system call that is blocked. The signals are most likely to occur
when we're blocked in a call to the select function (Section 14.5.1), waiting for input
from a slow device. (This is especially true for SITGALRM, since we set the alarm clock to
prevent us from waiting forever for input.) The code to handle this looks similar to the

following;:
if (intr flag) /* flag set by our SIGINT handler */
handle_intr();
if (alrm_flag) /+ flag set by our SIGALRM handler */

handle _alrm();
/* signals occurring in here are lost */

while (select(...) < 0) {
if (errno == EINTR) {
if (alrm_flag)
handle _alrm();
else if (intr_flag)
handle_intr();
} else {
/* some other errox */
}

}

We test each of the global flags before calling select and again if select returns an
interrupted system call error. The problem occurs if either signal is caught between the
first two if statements and the subsequent call to select. Signals occurring in here
are lost, as indicated by the code comment. The signal handlers are called, and they set
the appropriate global variable, but the select never returns (unless some data is
ready to be read).

What we would like to be able to do is the following sequence of steps, in order.

1. Biock SIGINT and STGALRM.

2. Test the two global variables to see whether either signal has occurred and, if so,
handle the condition.

340 Signals Chapter 10
3. Call select (or any other system function, such as read) and unblock the two
signals, as an atomic operation.
The sigsuspend function helps us only if step 3 is a pause operation.
10.17 abort Function

We mentioned earlier that the abort function causes abnormal program termination.

#include <stdlib.h>
void abort (void) ;

This function never returns

This function sends the SIGABRT signal to the caller. (Processes should not ignore this
signal.) ISO C states that calling abort will deliver an unsuccessful termination
notification to the host environment by calling raise (SIGABRT) .

ISO C requires that if the signal is caught and the signal handler returns, abort still
doesn’t return to its caller. If this signal is caught, the only way the signal handler can't
return is if it calls exit, _exit, Exit, longjmp, or siglongjmp. (Section 10.15
discusses the differences between longjmp and siglongjmp.) POSIX.1 also specifies
that abort overrides the blocking or ignoring of the signal by the process.

The intent of letting the process catch the SIGABRT is to allow it to perform any
cleanup that it wants to do before the process terminates. If the process doesn’t
terminate itself from this signal handler, POSIX.1 states that, when the signal handler
returns, abort terminates the process.

The ISO C specification of this function leaves it up to the implementation as to
whether output streams are flushed and whether temporary files (Section 5.13) are
deleted. POSIX.1 goes further and requires that if the call to abort terminates the
process, then the effect on the open standard 1/0 streams in the process will be the
same as if the process had called fclose on each stream before terminating.

Earlier versions of System V geherated the SIGIOT signal from the abort function.
Furthermore, it was possible for a process to ignore this signal or to catch it and return from
the signal handler, in which case abort returned to its caller.

4.3BSD generated the SIGILL signal. Before doing this, the 4.3BSD function unblocked the
signal and reset its disposition to SIG_DFL (terminate with core file). This prevented a
process from either ignoring the signal or catching it.

Historically, implementations of abort differ in how they deal with standard I/O streams.
For defensive programming and improved portability, if we want standard 1/O streams to be
flushed, we specifically do it before calling abort. We do this in the err_dump function
(Appendix B).

Since most UNIX System implementations of tmpfile call unlink immediately after creating
the file, the ISO C warning about temporary files does not usually concern us.

Section 10.17 abort Function 341

Example

Figure 10.25 shows an implementation of the abort function as specified by POSIX.1.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
abort (void) /* POSIX-style abort () function */
{ .
sigset_t mask;
struct sigaction action;
/*
* Caller can’'t ignore SIGABRT, if so reset to default.
*/

sigaction (SIGABRT, NULL, saction} ;

if (action.sa handler == SIG_IGN) ({
action.sa_handler = SIG_DFL;
sigaction(SIGABRT, &action, NULL) ;

}

if (action.sa_ handler == SIG_DFL)
fflush (NULL) ; /* flush all open stdio streams */

/*

* Caller can’t block SIGABRT; make sure it’s unblocked.

*/
sigfillset (&mask) ;

sigdelset (&mask, SIGABRT); /* mask has only SIGABRT turned off */
sigprocmask (SIG_SETMASK, &mask, NULL);
kill (getpid (), SIGABRT); /* send the signal */

/*

* If we’'re here, process caught SIGABRT and returned.

*/
fflush (NULL) ; /* flush all open stdio streams */
action.sa_handler = SIG_DFL;

sigaction (SIGABRT, gaction, NULL); /* reset to default */
sigprocmask (SIG_SETMASK, &mask, NULL); /* just in case ... */
kill (getpid(), SIGABRT); /* and one more time */
exit (1) ; /* this should never be executed ... x/

Figure 10.25 Implementation of POSIX.1 abort

We first see whether the default action will occur; if so, we flush all the standard I/0O
streams. This is not equivalent to an fclose on all the open streams (since it just
flushes them and doesn’t close them), but when the process terminates, the system

342

Signals Chapter 10

10.18

closes all open files. If the process catches the signal and returns, we flush all the
streams again, since the process could have generated more output. The only condition
we don’t handle is if the process catches the signal and calls _exit or Exit. In this
case, any unflushed standard 1/0 buffers in memory are discarded. We assume that a
caller that does this doesn’t want the buffers flushed.

Recall from Section 10.9 that if calling k111 causes the signal to be generated for the
caller, and if the signal is not blocked (which we guarantee in Figure 10.25), then the
signal (or some other pending, unlocked signal) is delivered to the process before kil1
returns. We block all signals except SIGABRT, so we know that if the call to kill
returns, the process caught the signal and the signal handler returned.]

system Function

In Section 8.13, we showed an implementation of the system function. That version,
however, did not do any signal handling. POSIX.1 requires that system ignore SIGINT
and SIGQUIT and block STGCHLD. Before showing a version that correctly handies
these signals, let's see why we need to worry about signal handling.

Example

The program shown in Figure 10.26 uses the version of system from Section 8.13 to
invoke the ed(1) editor. (This editor has been part of UNIX systems for a long time. We
use it here because it is an interactive program that catches the interrupt and quit
signals. If we invoke ed from a shell and type the interrupt character, it catches the
interrupt signal and prints a question mark. The ed program also sets the disposition of
the quit signal so that it is ignored.) The program in Figure 10.26 catches both SIGINT
and SIGCHLD. If we invoke the program, we get

$./a.out

a append text to the editor’s buffer

Here is one line of text

. period on a line by itself stops append mode

1,s%p print first through last lines of buffer to see what's there
Here is one line of text

w temp.foo write the buffer to a file

25 editor says it wrote 25 bytes

q and leave the editor

caught SIGCHLD

When the editor terminates, the system sends the SIGCHLD signal to the parent (the
a.out process). We catch it and return from the signal handler. But if it is catching the
SIGCHLD signal, the parent should be doing so because it has created its own children,
so that it knows when its children have terminated. The delivery of this signal in the
parent should be blocked while the system function is executing. Indeed, this is what
POSIX.1 specifies. Otherwise, when the child created by system terminates, it would
fool the caller of system into thinking that one of its own children terminated. The

Section 10.18

system Function 343

#include "apue.h"

static v~id

sig_int (int signo)

{
}

printf ("caught SIGINT\n");

static void

sig_chld(int signo)

{
}

int

printf ("caught SIGCHLD\n");

main(void)

{

if

(signal (SIGINT,

err_sys{"signal (S
if (signal (SIGCHLD, s
err sys("s S
{system("/bin/ed"! <

sig_int) == SIG_ERR)
(SIGINT) error");
ig chld) == SIG_ERR/
signal (SIGCHELD) errcr” ;

G

err sys!"system() error");

exit (0} ;

Figure 10.26 Using system to invoke the ed editor

caller would then use one of the wait functions to get the termination status of the
child, thus preventing the system function from being able to obtain the child’s
termination status for its return value.

If we run the program again, this time sending the editor an interrupt signal, we get

$./a.out
a
hello, world
1,3%p

hello, world
w temp.foo
13

ald

i
caught SIGINT

q
caught SIGCHLD

append text to the editor's buffer

period on a line by itself stops append mode
print first through last lines to sce what's there

write the buffer to a file

editor says it wrote 13 bytes

type the interrupt character

cditor catches signal, prints question mark
and so does the parent process

leave editor

Recall from Section 9.6 that typing the interrupt character causes the interrupt signal to
be sent to all the processes in the foreground process group. Figure 10.27 shows the
arrangement of the processes when the editor is running.

344 Signals Chapter 10

FTTTm oo 7 el a
» ! ! [
. k £
i | login shell }—+ for a.out fork /bin/sh ork /bin/ed | |
| | exec exec exec |
[J e e o e o e C el _ J
background process group foreground process group

Figure 10.27 Foreground and background process groups for Figure 10.26

In this example, SIGINT is sent to all three foreground processes. (The shell ignores it.)
As we can see from the output, both the a.out process and the editor catch the signal.
But when we're running another program with the system function, we shouldn’t have
both the parent and the child catching the two terminal-generated signals: interrupt and
quit. These two signals should really be sent to the program that is running: the child.
Since the command that is executed by system can be an interactive command (as is
the ed program in this example) and since the caller of system gives up control while
the program executes, waiting for it to finish, the caller of system should not be
receiving these two terminal-generated signals. This is why POSIX.1 specifies that the
system function should ignore these two signals while waiting for the command to
complete. O

Example

Figure 10.28 shows an implementation of the system function with the required signal

handling.
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <unistd.h>
int
system(const char *cmdstring) /* with appropriate signal handling */
{
pid_t pid;
int status;
struct sigaction ignore, saveintr, savequit;
sigset_t chldmask, savemask;

if (cmdstring == NULL)
return(l) ; /* always a command processor with UNIX */

ignore.sa_handler = SIG_IGN; /* ignore SIGINT and SIGQUIT */
sigemptyset (&ignore.sa_mask) ;
ignore.sa_flags = 0;
if (sigaction(SIGINT, &ignore, &saveintr) < 0)
return(-1);
if (sigaction(SIGQUIT, &ignore, &savequit) < 0)
return(-1);
sigemptyset (&chldmask) ; /* now block SIGCHLD */
sigaddset (&chldmask, SIGCHLD) ;

Section 10.18 system Function 345

if (sigprocmask(SIG_BLOCK, &chldmask, &savemask) < 0)
return(-1);

if ((pid = fork()) < 0) {
status = -1; /* probably out of processes */
} else if (pid == 0) { /* child */
/* restore previous signal actions & reset signal mask */
sigaction (SIGINT, &saveintr, NULL);
sigaction (SIGQUIT, &savequit, NULL);
sigprocmask (SIG_SETMASK, &savemask, NULL);

execl ("/bin/sh", "sh", "-c¢", cmdstring, (char *)0);
_exit (127); /* exec error */
} else { /* parent */
while (waitpid(pid, &status, 0) < 0)
if (errno != EINTR) ({
status = -1; /* error other than EINTR from waitpid() */
break;
}

/* restore previous signal actions & reset signal mask */
if (sigaction(SIGINT, &saveintr, NULL) < 0)
return(-1);
if (sigaction(SIGQUIT, &savequit, NULL) < 0)
return(-1);
if (sigprocmask (SIG_SETMASK, &savemask, NULL) < 0)
return(-1);

return(status) ;

Figure 10.28 Correct POSIX.1 implementation of system function

If we link the program in Figure 10.26 with this implementation of the system function,
the resulting binary differs from the last (flawed) one in the following ways.

1. No signal is sent to the calling process when we type the interrupt or quit
character.

2. When the ed command exits, SIGCHLD is not sent to the calling process.
Instead, it is blocked until we unblock it in the last call to sigprocmask, after
the system function retrieves the child’s termination status by calling
waitpid.

POSIX.1 states that if wait or waitpid returns the status of a child process while SIGCHLD is
pending, then SIGCHLD should not be delivered to the process unless the status of another
child process is also available. None of the four implementations discussed in this book
implements this semantic. Instead, STGCHLD remains pending after the system function calls
waitpid; when the signal is unblocked, it is delivered to the caller. If we called wait in the
sig_chld function in Figure 10.26, it would return -1 with errno set to ECHILD, since the
system function already retrieved the termination status of the child.

346

Signals Chapter 10

Many older texts show the ignoring of the interrupt and quit signals as follows:

if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid == 0) {
/* child */
execl(...);
_exit(127);

}

/* parent */

old_intr = signal (SIGINT, SIG_IGN);
old quit = signal (SIGQUIT, SIG_IGN) ;
waitpid(pid, &status, 0)

signal (SIGINT, old intr);

signal (SIGQUIT, old quit);

The problem with this sequence of code is that we have no guarantee after the fork
whether the parent or child runs first. If the child runs first and the parent doesn’t run
for some time after, it’s possible for an interrupt signal to be generated before the parent
is able to change its disposition to be ignored. For this reason, in Figure 10.28, we
change the disposition of the signals before the fork.

Note that we have to reset the dispositions of these two signals in the child before
the call to execl. This allows execl to change their dispositions to the default, based
on the caller’s dispositions, as we described in Section 8.10. O

Return Value from system

Beware of the return value from system. It is the termination status of the shell, which
isn’t always the termination status of the command string. We saw some examples in
Figure 8.23, and the results were as we expected: if we execute a simple command, such
as date, the termination status is 0. Executing the shell command exit 44 gave us a
termination status of 44. What happens with signals?

Let’s run the program in Figure 8.24 and send some signals to the command that's
executing:

$ tsys "sleep 30"

“?normal termination, exit status = 130 we type the interrupt key
$ tsys "sleep 30"

“\sh: 946 Quit we type the quit key
normal termination, exit status = 131

When we terminate the sleep with the interrupt signal, the pr exit function
(Figure 8.5) thinks that it terminated normally. The same thing happens when we kill
the sleep with the quit key. What is happening here is that the Bourne shell has a
poorly documented feature that its termination status is 128 plus the signal number,
when the command it was executing is terminated by a signal. We can see this with the
shell interactively.

Section 10.19 sleep Function 347

$ sh make sure we're running the Bourne shell
$ sh -c "sleep 30"

"2 type the interrupt key

$ echo $? print termination status of last command
130

$ sh -c "sleep 30"

“\sh: 962 Quit - core dumped type the quit key

$ echo $7? pﬂnt&nnhmﬁmrﬁahﬁ(fbwtamumum
131

$ exit leave Bourne shell

On the system being used, SIGINT has a value of 2 and SIGQUIT has a value of 3,
giving us the shell’s termination statuses of 130 and 131.

Let’s try a similar example, but this time we'll send a signal directly to the shell and
see what gets returned by system:

$ tsys "sleep 30" & start it in background this time
9257
$ ps -£ look at the process [Ds

UID PID PPID TTY TIME CMD

sar 9260 949 pts/5 0:00 ps -f

sar 9258 9257 pts/5 0:00 sh -c sleep 60

sar 949 947 pts/5 0:01 /bin/sh

sar 9257 949 pts/5 0:00 tsys sleep 60

C

sar 9259 9258 pts/S :00 sleep 60
$ kill -KILL 9258 kill the shell itself
abnormal termination, signal number = 9

Here, we can see that the return value from system reports an abnormal termination
only when the shell itself abnormally terminates.

When writing programs that use the system function, be sure to interpret the
return value correctly. If you call fork, exec, and wait yourself, the termination
status is not the same as if you call system.

10.19 sleep Function

We've used the sleep function in numerous examples throughout the text, and we
showed two flawed implementations of it in Figures 10.7 and 10.8.

#include <unistd.h>
unsigned int sleep (unsigned int seconds) ;

Returns: 0 or number of unslept seconds

This function causes the calling process to be suspended until either

1. The amount of wall clock time specified by seconds has elapsed.

2. A signal is caught by the process and the signal handler returns.

348 Signals Chapter 10

As with an alarm signal, the actual return may be at a time later than requested,
because of other system activity.

In case 1, the return value is 0. When sleep returns early, because of some signal
being caught (case 2), the return value is the number of unslept seconds (the requested
time minus the actual time slept).

Although sleep can be implemented with the alarm function (Section 10.10), this
isn’t required. If alarm is used, however, there can be interactions between the two
functions. The POSIX.1 standard leaves all these interactions unspecified. For example,
if we do an alarm(10) and 3 wall clock seconds later do a sleep (5), what happens?
The sleep will return in 5 seconds (assuming that some other signal isn’t caught in that
time), but will another SIGALRM be generated 2 seconds later? These details depend on
the implementation.

Solaris 9 implements sleep using alarm. The Solaris sleep (3) manual page says that a
previously scheduled alarm is properly handled. For example, in the preceding scenario,
before sleep returns, it will reschedule the alarm to happen 2 seconds later; sleep returns 0
in this case. (Obviously, sleep must save the address of the signal handler for SIGALRM and
reset it before returning.) Also, if we do an alarm(6) and 3 wall clock seconds later do a
sleep(5), the sleep returns in 3 seconds (when the alarm goes off), not in 5 seconds. Here,
the return value from sleep is 2 (the number of unslept seconds).

FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, on the other hand, use another technique: the
delay is provided by nanosleep(2). This function is specified to be a high-resolution delay by
the real-time extensions in the Single UNIX Specification. This function allows the
implementation of s1eep to be independent of signals.

For portability, you shouldn’t make any assumptions about the implementation of sleep, but
if you have any intentions of mixing calls to sleep with any other timing functions, you need
to be aware of possible interactions.

Example

Figure 10.29 shows an implementation of the POSIX.1 s1eep function. This function is
a modification of Figure 10.7, which handles signals reliably, avoiding the race condition
in the earlier implementation. We still do not handle any interactions with previously
setalarms. (As we mentioned, these interactions are explicitly undefined by POSIX.1.)

#include "apue.h"

static- void
sig_alrm(int signo)

{
}

unsigned int
sleep (unsigned int nsecs)

/* nothing to do, just returning wakes up sigsuspend() */

struct sigaction newact, oldact;
sigset_t newmask, oldmask, suspmask;

R

Section 10.20 Job-Control Signals 349

unsigned int unslept;

/* set our handler, save previous information */
newact.sa_ handler = sig_alrm;

sigemptyset (&newact.sa_mask) ;

newact.sa_flags = 0;

sigaction (SIGALRM, &newact, &oldact);

/* block SIGALRM and save current signal mask */
sigemptyset (&newmask) ;

sigaddset (&newmask, SIGALRM) ;
sigprocmask (SIG BLOCK, &newmask, &oldmask);

alarm(nsecs) ;

suspmask = oldmask;
sigdelset (&suspmask, SIGALRM); /* make sure SIGALRM isn’t blocked */
sigsuspend (&suspmask) ; /* wait for any signal to be caught */

/* some signal has been caught, SIGALRM is now blocked */

unslept = alarm(0);
sigaction (SIGALRM, &oldact, NULL); /* reset previous action */

/* reset signal mask, which unblocks SIGALRM */
sigprocmask (SIG SETMASK, &oldmask, NULL);
return (unslept) ;

Figure 10.29 Reliable implementation of sleep

It takes more code to write this reliable implementation than what is shown in
Figure 10.7. We don’t use any form of nonlocal branching (as we did in Figure 10.8 to
avoid the race condition between the alarm and pause), so there is no effect on other
signal handlers that may be executing when the SIGALRM is handled. 0

10.20 Job-Control Signals

Of the signals shown in Figure 10.1, POSIX.1 considers six to be job-control signals:
SIGCHLD Child process has stopped or terminated.
SIGCONT Continue process, if stopped.
SIGSTOP Stop signal (can’t be caught or ignored).
SIGTSTP Interactive stop signal.

SIGTTIN Read from controlling terminal by member of a background process
group.

SIGTTOU Write to controlling terminal by member of a background process
group.

350 Signals Chapter 10

Except for SIGCHLD, most application programs don’t handle these signals:
interactive shells usually do all the work required to handle these signals. When we
type the suspend character (usually Control-Z), SIGTSTP is sent to all processes in the
foreground process group. When we tell the shell to resume a job in the foreground or
background, the shell sends all the processes in the job the SIGCONT signal. Similarly, if
SIGTTIN or SIGTTOU is delivered to a process, the process is stopped by default, and
the job-control shell recognizes this and notifies us.

An exception is a process that is managing the terminal: the vi(1) editor, for
example. It needs to know when the user wants to suspend it, so that it can restore the
terminal’s state to the way it was when vi was started. Also, when it resumes in the
foreground, the vi editor needs to set the terminal state back to the way it wants it, and
it needs to redraw the terminal screen. We see how a program such as vi handles this
in the example that follows.

There are some interactions between the job-control signals. When any of the four
stop signals (SIGTSTP, SIGSTOP, SIGTTIN, or SIGTTOU) is generated for a process,
any pending SIGCONT signal for that process is discarded. Similarly, when the
SIGCONT signal is generated for a process, any pending stop signals for that same
process are discarded.

Note that the default action for SIGCONT is to continue the process, if it is stopped;
otherwise, the signal is ignored. Normally, we don’t have to do anything with this
signal. When SIGCONT is generated for a process that is stopped, the process is
continued, even if the signal is blocked or ignored.

Example

The program in Figure 10.30 demonstrates the normal sequence of code used when a
program handles job control. This program simply copies its standard input to its
standard output, but comments are given in the signal handler for typical actions
performed by a program that manages a screen. When the program in Figure 10.30
starts, it arranges to catch the SIGTSTP signal only if the signal’s disposition is
SIG_DFL. The reason is that when the program is started by a shell that doesn't
support job control (/bin/sh, for example), the signal’s disposition should be set to
SIG_IGN. In fact, the shell doesn't explicitly ignore this signal; init sets the
disposition of the three job-control signals (SIGTSTP, SIGTTIN, and SIGTTOU) to
SIG_IGN. This disposition is then inherited by all login shells. Only a job-control shell
should reset the disposition of these three signals to SIG_DFL.

When we type the suspend character, the process receives the SIGTSTP signal, and
the signal handler is invoked. At this point, we would do any terminal-related
processing: move the cursor to the lower-left corner, restore the terminal mode, and so
on. We then send ourself the same signal, SIGTSTP, after resetting its disposition to its
default (stop the process) and unblocking the signal. We have to unblock it since we're
currently handling that same signal, and the system blocks it automatically while it's
being caught. At this point, the system stops the process. It is continued only when it
receives (usually from the job-control shell, in response to an interactive fg command) a

Section 10.20

]6b-Contr01 Signals

351

#include "apue.h"

#define BUFFSIZE 1024

static void sig_tstp(int);

int

main (void)

{

}

int n;
char buf [BUFFSIZE] ;
/*

* only catch SIGTSTP if we’re running with a job-control shell.
*/
if (signal (SIGTSTP, SIG_IGN) == SIG_DFL)

signal (SIGTSTP, sig_tstp);

while ((n = read(STDIN FILENO, buf, BUFFSIZE)) > 0)
if (write (STDOUT_ FILENO, buf, n) != n)
err sys("write error");

if (n < 0)
err_sys("read error");

exit (0) ;

static void
sig tstp(int signo) /* signal handler for SIGTSTP */

{

sigset_t mask;
/* ... move cursor to lower left corner, reset tty mode ... */
/*

* Unblock SIGTSTP, since it’s blocked while we’re handling it.
*/

sigemptyset (&mask) ;

sigaddset (&mask, SIGTSTP);

sigprocmask (SIG_UNBLOCK, &mask, NULL);

signal (SIGTSTP, SIG_pFL); /* reset disposition to default */
kill (getpid (), SIGTSTP); /* and send the signal to ourself */
/* we won't return from the kill until we're continued */

signal (SIGTSTP, sig_tstp); /* reestablish signal handler */

/* ... reset tty mode, redraw screen ... */

Figure 10.30 How to handle SIGTSTP

352

Signals Chapter 10

10.21

SIGCONT signal. We don’t catch SIGCONT. Its default disposition is to continue the
stopped process; when this happens, the program continues as though it returned from
the kill funetion. When the program is continued, we reset the disposition for the
SIGTSTP signal and do whatever terminal processing we want (we could redraw the
screen, for example). O

Additional Features

In this section, we describe some additional implementation-dependent features of

signals.

Signal Names

Some systems provide the array
extern char *sys_siglist([];

The array index is the signal number, giving a pointer to the character string name of
the signal. '

FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 all provide this array of signal names. Solaris 9
does, too, but it uses the name _sys_siglist instead.

These systems normally provide the function psignal also.

#include <signal.h>

void psignal (int signo, const char *msg) ;

The string msg (which is normally the name of the program) is output to the standard
error, followed by a colon and a space, followed by a description of the signal, followed
by a newline. This function is similar to perror (Section 1.7).

Another common function is strsignal. This function is similar to strerror
(also described in Section 1.7).

#include <string.h>

char *strsignal (int signo) ;

Returns: a pointer to a string describing the signal

Given a signal number, strsignal will return a string that describes the signal. This
string can be used by applications to print error messages about signals received.

All the platforms discussed in this book provide the psignal and strsignal functions, but
differences do occur. On Solaris 9, strsignal will return a null pointer if the signal number
is invalid, whereas FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 return a string indicating
that the signal number is unrecognized. Also, to get the function prototype for psignal on
Solaris, you need to include <siginfo.h>.

Chapter 10 Exercises 353

Signal Mappings

10.22

Solaris provides a couple of functions to map a signal number to a signal name and vice
versa. -

#include <signal.h>
int sig2str(int signo, char *str);

int str2sig(const char *str, int *signop);

Both return: 0 if OK, -1 on error

These functions are useful when writing interactive programs that need to accept and
print signal names and numbers.

The sig2str function translates the given signal number into a string and stores
the result in the memory pointed to by str. The caller must ensure that the memory is
large enough to hold the longest string, including the terminating null byte. Solaris
provides the constant SIG2STR_MAX in <signal.h> to define the maximum string
length. The string consists of the signal name without the “SIG” prefix. For example,
translating SIGKILL would result in the string “KILL" being stored in the str memory
buffer.

The str2sig function translates the given name into a signal number. The signal
number is stored in the integer pointed to by signop. The name can be either the signal
name without the “SIG” prefix or a string representation of the decimal signal number
(ie., “97).

Note that sig2str and str2sig depart from common practice and don’t set
errno when they fail.

Summary

Signals are used in most nontrivial applications. An understanding of the hows and
whys of signal handling is essential to advanced UNIX System programming. This
chapter has been a long and thorough look at UNIX System signals. We started by
looking at the warts in previous implementations of signals and how they manifest
themselves. We then proceeded to the POSIX.1 reliable-signal concept and all the
related functions. Once we covered all these details, we were able to provide
implementations of the POSIX.1 abort, system, and sleep functions. We finished
with a look at the job-control signals and the ways that we can convert between signal
names and signal numbers.

Exercises

10.1 In Figure 10.2, remove the for (; ;) statement. What happens and why?
10.2 Implement the sig2str function described in Section 10.21.

354

Si‘gnals Chapter 10

10.3
104

10.5

10.6

10.7

10.8

10.9

Draw pictures of the stack frames when we run the program from Figure 10.9.

In Figure 10.11, we showed a technique that’s often used to set a timeout on an 1/O
operation using set jmp and longjmp. The following code has also been seen:

signal (SIGALRM, sig alrm);

alarm(60) ;

if (setjmp(env_alrm) != 0) {
/* handle timeout */

What else is wrong with this sequence of code?

Using only a single timer (either alarm or the higher-precision setitimer), provide a set
of functions that allows a process to set any number of timers.

Write the following program to test the parent—hild synchronization functions in
Figure 10.24. The process creates a file and writes the integer 0 to the file. The process then
calls fork, and the parent and child alternate incrementing the counter in the file. Each
time the counter is incremented, print which process (parent or child) is doing the
increment.

In the function shown in Figure 10.25, if the caller catches SIGABRT and returns from the
signal handler, why do we go to the trouble of resetting the disposition to its default and
call kill the second time, instead of simply calling _exit?

Why do you think the siginfo structure (Section 10.14) includes the real user ID, instead
of the effective user ID, in the si_uid field?

Rewrite the function in Figure 10.14 to handle all the signals from Figure 10.1. The function
should consist of a single loop that iterates once for every signal in the current signal mask
(not once for every possible signal).

10.10 Write a program that calls sleep (60) in an infinite loop. Every five times through the

loop (every 5 minutes), fetch the current time of day and print the tm_sec field. Run the
program overnight and explain the results. How would a program such as the BSD cron
daemon, which runs every minute on the minute, handle this?

10.11 Modify Figure 3.4 as follows: (a) change BUFFSIZE to 100; (b) catch the SIGXFSZ signal

using the signal_intr function, printing a message when it’s caught, and returning from
the signal handler; and (c) print the return value from write if the requested number of
bytes weren't written. Modify the soft RLIMIT_FSIZE resource limit (Section 7.11) to 1,024
bytes and run your new program, copying a file that is larger than 1,024 bytes. (Try to set
the soft resource limit from your shell. If you can’t do this from your shell, call setrlimit
directly from the program.) Run this program on the different systems that you have access
to. What happens and why?

10.12 Write a program that calls fwrite with a large buffer (a few hundred megabytes). Before

calling fwrite, call alarm to schedule a signal in 1 second. In your signal handler, print
that the signal was caught and return. Does the call to fwrite complete? What's
happening? '

111

11.2

11

Threads

Introduction

We discussed processes in earlier chapters. We learned about the environment of a
UNIX process, the relationships between processes, and ways to control processes. We
saw that a limited amount of sharing can occur between related processes.

In this chapter, we’ll look inside a process further to see how we can use multiple
threads of control (or simply threads) to perform multiple tasks within the environment of
a single process. All threads within a single process have access to the same process
components, such as file descriptors and memory.

Any time you try to share a single resource among multiple users, you have to deal
with consistency. We'll conclude the chapter with a look at the synchronization
mechanisms available to prevent multiple threads from viewing inconsistencies in their
shared resources.

Thread Concepts

A typical UNIX process can be thought of as having a single thread of control: each
process is doing only one thing at a time. With multiple threads of control, we can
design our programs to do more than one thing at a time within a single process, with
each thread handling a separate task. This approach can have several benefits.

e We can simplify code that deals with asynchronous events by assigning a
separate thread to handle each event type. Each thread can then handle its event
using a synchronous programming model. A synchronous programming model
is much simpler than an asynchronous one.

355

356

Threads Chapter 11

11.3

* Multiple processes have to use complex mechanisms provided by the operating
system to share memory and file descriptors, as we will see in Chapters 15
and 17. Threads, on the other hand, automatically have access to the same
memory address space and file descriptors.

* Some problems can be partitioned so that overall program throughput can be
improved. A single process that has multiple tasks to perform implicitly
serializes those tasks, because there is only one thread of control. With multiple
threads of control, the processing of independent tasks can be interleaved by
assigning a separate thread per task. Two tasks can be interleaved only if they
don’t depend on the processing performed by each other.

* Similarly, interactive programs can realize improved response time by using
multiple threads to separate the portions of the program that deal with user
input and output from the other parts of the program.

Some people associate multithreaded programming with multiprocessor systems.
The benefits of a multithreaded programming model can be realized even if your
program is running on a uniprocessor. A program can be simplified using threads
regardless of the number of processors, because the number of processors doesn't affect
the program structure. Furthermore, as long as your program has to block when
serializing tasks, you can still see improvements in response time and throughput when
running on a uniprocessor, because some threads might be able to run while others are
blocked.

A thread consists of the information necessary to represent an execution context
within a process. This includes a thread ID that identifies the thread within a process, a
set of register values, a stack, a scheduling priority and policy, a signal mask, an errno
variable (recall Section 1.7), and thread-specific data (Section 12.6). Everything within a
process is sharable among the threads in a process, including the text of the executable
program, the program’s global and heap memory, the stacks, and the file descriptors.

The threads interface we’re about to see is from POSIX.1-2001. The threads
interface, also known as “pthreads” for “POSIX threads,” is an optional feature in
POSIX.1-2001. The feature test macro for POSIX threads is _POSIX THREADS.
Applications can either use this in an #ifdef test to determine at compile time whether
threads are supported or call sysconf with the SC_THREADS constant to determine at
runtime whether threads are supported.

Thread Identification

Just as every process has a process ID, every thread has a thread ID. Unlike the process
ID, which is unique in the system, the thread ID has significance only within the context
of the process to which it belongs.

Recall that a process ID, represented by the pid_t data type, is a non-negative
integer. A thread ID is represented by the pthread_t data type. Implementations are
allowed to use a structure to represent the pthread t data type, so portable
implementations can’t treat them as integers. Therefore, a function must be used to
compare two thread IDs.

Section 11.4 Thread Creation 357

11.4

#include <pthread.h>

int pthread equal (pthread t tidl, pthread_t tid2);

Returns: nonzero if equal, 0 otherwise

Linux 2.4.22 uses an unsigned long integer for the pthread_t data type. Solaris 9 represents
the pthread_t data type as an unsigned integer. FreeBSD 5.2.1 and Mac OS X 10.3 use a
pointer to the pthread structure for the pthread_t data type.

A consequence of allowing the pthread_t data type to be a structure is that there
is no portable way to print its value. Sometimes, it is useful to print thread IDs during
program debugging, but there is usually no need to do so otherwise. At worst, this
results in nonportable debug code, so it is not much of a limitation.

A thread can obtain its own thread ID by calling the pthread_self function.

#include <pthread.h>
pthread t pthread_self (void);

Returns: the thread ID of the calling thread

This function can be used with pthread equal when a thread needs to identify data
structures that are tagged with its thread ID. For example, a master thread might place
work assignments on a queue and use the thread ID to control which jobs go to each
worker thread. This is illustrated in Figure 11.1. A single master thread places new jobs
on a work queue. A pool of three worker threads removes jobs from the queue. Instead
of allowing each thread to process whichever job is at the head of the queue, the master
thread controls job assignment by placing the ID of the thread that should process the
job in each job structure. Each worker thread then removes only jobs that are tagged
with its own thread ID.

Thread Creation

The traditional UNIX process model supports only one thread of control per process.
Conceptually, this is the same as a threads-based model whereby each process is made
up of only one thread. With pthreads, when a program runs, it also starts out as a single
process with a single thread of control. As the program runs, its behavior should be
indistinguishable from the traditional process, until it creates more threads of control.
Additional threads can be created by calling the pthread_create function.

#include <pthread.h>

int pthread create (pthread_t *restrict tidp,
const pthread_attr t *restrict attr,
void * (*start_rtn) (void), void *restrict arg);

Returns: 0 if OK, error number on failure

358 Threads Chapter 11

master
thread
TID 1 TID 3 TID 2 TID 3
................ (‘1’:::(6 job job job job

Figure 11.1 Work queue example

The memory location pointed to by tidp is set to the thread ID of the newly created
thread when pthread create returns successfully. The attr argument is used to
customize various thread attributes. We’ll cover thread attributes in Section 12.3, but
for now, we'll set this to NULL to create a thread with the default attributes.

The newly created thread starts running at the address of the start_rtn function.
This function takes a single argument, arg, which is a typeless pointer. If you need to
pass more than one argument to the start_rtn function, then you need to store them in a
structure and pass the address of the structure in arg.

When a thread is created, there is no guarantee which runs first: the newly created
thread or the calling thread. The newly created thread has access to the process address
space and inherits the calling thread’s floating-point environment and signal mask;
however, the set of pending signals for the thread is cleared.

Note that the pthread functions usually return an error code when they fail. They
don’t set errno like the other POSIX functions. The per thread copy of errno is
provided only for compatibility with existing functions that use it. With threads, it is
cleaner to return the error code from the function, thereby restricting the scope of the
error to the function that caused it, instead of relying on some global state that is
changed as a side effect of the function.

Example

Although there ic no portable way to print the thread ID, we can write a small test
program that does, to gain some insight into how threads work. The program in

Section 11.4 Thread Creation 359

Figure 11.2 creates one thread and prints the process and thread IDs of the new thread
and the initial thread.

#include "apue.h"
#include <pthread.h>

pthread t ntid;

void
printids(const char *s)
{
pid t pid;
pthread t tid;

pid = getpid();

tid = pthread_self();

printf("$s pid %u tid %u (0x3%x)\n", s, (unsigned int)pid,
(unsigned int)tid, (unsigned int)tid);

}

void *

thr_fn(void *arg)

{
printids ("new thread: ");
return({(void *)0);

}

int
main(void)
int err;

err = pthread create(&ntid, NULL, thr_fn, NULL);
if (err != 0)
err_quit("can’t create thread: $s\n", strerror(err));
printids("main thread:");
sleep(1);
exit (0);

Figure 11.2 Printing thread IDs

This example has two oddities, necessary to handle races between the main thread and .
the new thread. (We’'ll learn better ways to deal with these later in this chapter.) The
first is the need to sleep in the main thread. If it doesn’t sleep, the main thread might
exit, thereby terminating the entire process before the new thread gets a chance to run.
This behavior is dependent on the operating system’s threads implementation and
scheduling algorithms.

The second oddity is that the new thread obtains its thread ID by calling
pthread_self instead of reading it out of shared memory or receiving it as an
argument to its thread-start routine. Recall that pthread create will return the
thread 1D of the newly created thread through the first parameter (tidp). In our

360

Threads Chapter 11
example, the main thread stores this in ntid, but the new thread can’t safely use it. If
the new thread runs before the main thread returns from calling pthread create,
then the new thread will see the uninitialized contents of ntid instead of the thread ID.

Running the program in Figure 11.2 on Solaris gives us

$./a.out

main thread: pid 7225 tid 1 (0x1)

new thread: pid 7225 tid 4 (0x4)

As we expect, both threads have the same process ID, but different thread IDs. Running
the program in Figure 11.2 on FreeBSD gives us

$./a.out

main thread: pid 14954 tid 134529024 (0x804c000)

new thread: pid 14954 tid 134530048 (0x804c400)

As we expect, both threads have the same process ID. If we look at the thread IDs as
decimal integers, the values look strange, but if we look at them in hexadecimal, they
make more sense. As we noted earlier, FreeBSD uses a pointer to the thread data
structure for its thread ID.

We would expect Mac OS X to be similar to FreeBSD; however, the thread ID for the
main thread is from a different address range than the thread IDs for threads created
with pthread create:

$./a.out

main thread: pid 779 tid 2684396012 (0xa000alec)

new thread: pid 779 tid 25166336 (0x1800200)

Running the same program on Linux gives us slightly different results:

$./a.out

new thread: pid 6628 tid 1026 (0x402)

main thread: pid 6626 tid 1024 (0x400)

The Linux thread IDs look more reasonable, but the process IDs don’t match. This is an
artifact of the Linux threads implementation, where the clone system call is used to
implement pthread create. The clone system call creates a child process that can
share a configurable amount of its parent’s execution context, such as file descriptors
and memory.

Note also that the output from the main thread appears before the output from the
thread we create, except on Linux. This illustrates that we can’t make any assumptions
about how threads will be scheduled. O

11.5 Thread Termination

If any thread within a process calls exit, _Exit, or _exit, then the entire process
terminates. Similarly, when the default action is to terminate the process, a signal sent
to a thread will terminate the entire process (we’ll talk more about the interactions
between signals and threads in Section 12.8).

A single thread can exit in three ways, thereby stopping its flow of control, without
terminating the entire process.

Section 11.5 Thread Termination 361

1. The thread can simply return from the start routine. The return value is the
thread’s exit code.

The thread can be canceled by another thread in the same process.
The thread can call pthread_exit.

#include <pthread.h>

void pthread exit (void *rval_ptr);

The rval_ptr is a typeless pointer, similar to the single argument passed to the start
routine. This pointer is available to other threads in the process by calling the
pthread_ join function.

#include <pthread.h>
int pthread join(pthread_t thread, void **rval_ptr);

Returns: 0 if OK, error number on failure

The calling thread will block until the specified thread calls pthread_exit, returns
from its start routine, or is canceled. If the thread simply returned from its start routine,
roal_ptr will contain the return code. If the thread was canceled, the memory location
specified by rval_ptr is set to PTHREAD_CANCELED.

By calling pthread_join, we automatically place a thread in the detached state
(discussed shortly) so that its resources can be recovered. If the thread was already in
the detached state, calling pthread_join fails, returning EINVAL.

If we're not interested in a thread’s return value, we can set rval_ptr to NULL. In this
case, calling pthread_join allows us to wait for the specified thread, but does not
retrieve the thread’s termination status.

Example

Figure 11.3 shows how to fetch the exit code from a thread that has terminated.

#include "apue.h"
#include <pthread.h>

void *
thr_fnl(void *arg)
{

printf ("thread 1 returning\n");
return((void *)1);

}

void *
thr_fn2(void *arg)

{

printf ("thread 2 exiting\n");

362 Threads Chapter 11

pthread_exit ((void *)2);
}
int
main (void)

{

int err;
pthread t tidl, tid2;
void *tret;

err = pthread create(&tidl, NULL, thr fnl, NULL);
if (err != 0)

err_quit("can't create thread 1: $%s\n", strerror(err));
err = pthread create(&tid2, NULL, thr fn2, NULL);
if (err != 0)

err_quit("can't create thread 2: %s\n", strerror(err));
err = pthread join(tidl, &tret);
if (err != 0)

err_quit("can’t join with thr=ad 1: %s\n", strerror(err));
printf ("thread 1 exit code %d\n", (int)tret);
err = pthread join(tid2, &tret);
if (err != 0)

err_quit("can’t join with thread 2: %s\n", strerror(err));
printf ("thread 2 exit code %d\n", (int)tret);
exit (0);

Figure 11.3 Fetching the thread exit status

Running the program in Figure 11.3 gives us

$./a.out

thread 1 returning
thread 2 exiting
thread 1 exit code 1
thread 2 exit code 2

As we can see, when a thread exits by calling pthread_exit or by simply returning
from the start routine, the exit status can be obtained by another thread by calling
pthread_join. a

The typeless pointer passed to pthread_create and pthread_exit can be used
to pass more than a single value. The pointer can be used to pass the address of a
structure containing more complex information. Be careful that the memory used for
the structure is still valid when the caller has completed. If the structure was allocated
on the caller’s stack, for example, the memory contents might have changed by the time
the structure is used. For example, if a thread allocates a structure on its stack and
passes a pointer to this structure to pthread_exit, then the stack might be destroyed
and its memory reused for something else by the time the caller of pthread join tries
to use it.

Section 11.5 Thread Termination 363

Example

The program in Figure 11.4 shows the problem with using an automatic variable
(allocated on the stack) as the argument to pthread exit.

#include "apue.h"
#include <pthread.h>

struct foo {
int a, b, ¢, d;
}i

void
printfoo(const char *s, const struct foo *fp)

{

printf (s);
printf (" structure at 0x%x\n", (unsigned) fp) ;
printf (" foo.a = $d\n", fp-»>a);

printf (" foo.b = %d\n", fp->b);
printf(" foo.c = %d\n", fp->c);
printf (" foo.d = %d\n", fp->d) ;

}
void *
thr_ fnl(void *arg)

{

struct foo foo = {1, 2, 3, 4};

printfoo ("thread 1:\n", &foo);
pthread_exit ((void *)&foo);

}

void *

thr fn2(void *arg)

{
printf ("thread 2: ID is %d\n", pthread_self());
pthread exit((void *)0);

}

int
main (void)
int err;

pthread_t tidl, tid2;
struct foo *fp;

err = pthread create(&tidl, NULL, thr fnl, NULL);
if (err != 0)

err _quit("can’t create thread 1: $s\n", strerror(err));
err = pthread_join(tidl, (void *) &fp) ;

if (err != 0)
err_quit("can’t join with thread 1: %s\n", strerror(err));
sleep (1) ;

printf ("parent starting second thread\n");

364 Threads Chapter 11

err = pthread_create(&tid2, NULL, thr fn2, NULL);

if (err != 0)
err, quit ("can’t create thread 2: $s\n", strerror(err));
sleep (1) ;
printfoo ("parent:\n", fp);
exit (0} ;

Figure 11.4 Incorrect use of pthread_exit argument

When we run this program on Linux, we get

$./a.out
thread 1:
structure at 0x409a2abc
foo.a = 1
foo.b = 2
foo.c = 3
foo.d = 4

parent starting second thread
thread 2: ID is 32770
parent:
structure at 0x409a2abc
foo.a = 0

foo.b = 32770
foo.c = 1075430560
foo.d = 1073937284

Of course, the results vary, depending on the memory architecture, the compiler, and
the implementation of the threads library. The results on FreeBSD are similar:

$./a.out
thread 1:
structure at OxbfafefcO
foo.a =1
foo.b = 2
foo.c = 3
foo.d = 4

parent starting second thread
thread 2: ID is 134534144

parent:
structure at OxbfafefcO
foo.a = 0
foo.b = 134534144
foo.¢c = 3
foo.d = 671642590

As we can see, the contents of the structure (allocated on the stack of thread tid1) have
changed by the time the main thread can access the structure. Note how the stack of the
second thread (tid2) has overwritten the first thread’s stack. To solve this problem, we
can either use a global structure or allocate the structure using malloc. O

Section 11.5 Thread Termination 365

One thread can request that another in the same process be canceled by calling the
pthread_ cancel function.

#include <pthread.h>

int pthread cancel (pthread_t tid);

Returns: 0 if OK, error number on failure

In the default circumstances, pthread_cancel will cause the thread specified by tid to
behave as if it had called pthread exit with an argument of PTHREAD_ CANCELED.
However, a thread can elect to ignore or otherwise control how it is canceled. We will
discuss this in detail in Section 12.7. Note that pthread_cancel doesn’t wait for the
thread to terminate. It merely makes the request.

A thread can arrange for functions to be called when it exits, similar to the way that
the atexit function (Section 7.3) can be used by a process to arrange that functions can
be called when the process exits. The functions are known as thread cleanup handlers.
More than one cleanup handler can be established for a thread. The handlers are
recorded in a stack, which means that they are executed in the reverse order from that
with which they were registered.

#include <pthread.h>
void pthread cleanup_push(void (*rtn) (void *), void *arg);

void pthread cleanup_ pop (int execute) ;

The pthread cleanup push function schedules the cleanup function, rin, to be
called with the single argument, arg, when the thread performs one of the following
actions:

¢ Makes a call to pthread exit
e Responds to a cancellation request

e Makes a call to pthread_cleanup_pop with a nonzero execute argument

If the execute argument is set to zero, the cleanup function is not called. In either
case, pthread_cleanup_pop removes the cleanup handler established by the last call
to pthread_cleanup_push.

A restriction with these functions is that, because they can be implemented as
macros, they must be used in matched pairs within the same scope in a thread. The
macro definition of pthread_cleanup push can include a { character, in which case
the matching } character is in the pthread_cleanup_pop definition.

Example

Figure 11.5 shows how to use thread cleanup handlers. Although the example is
somewhat contrived, it illustrates the mechanics involved. Note that although we never
intend to pass a nonzero argument to the thread start-up routines, we still need to
match calls to pthread cleanup pop with the calls to pthread cleanup_push;
otherwise, the program might not compile.

366 Threads

Chapter 11

#include "apue.h"
#include <pthread.h>

void
cleanup (void *arg)

{
}

void *
thr fnl(void *arg)

{

printf ("cleanup: %s\n",

printf ("thread 1 start\n");
pthread_cleanup_push(cleanup,
pthread_cleanup_push(cleanup,
if (arg)

return((void *)1);
pthread cleanup_ pop(0);
pthread cleanup_pop (0) ;
return((void *)1);

}

void *

thr_fn2(void *arg)

{
printf ("thread 2 start\n");
pthread cleanup push (cleanup,
pthread cleanup_push(cleanup,
printf ("thread 2 push complete\n")
if (arg)

pthread exit ((void *)2);

pthread _cleanup_pop(0) ;
_pthread cleanup pop(0) ;
pthread _exit ((void *)2);

}

int

main(void)

{

int err;
pthread t tidl, tid2;
void *tret;
err = pthread create(&tidl, NULL,
if (err != 0)

err_quit("can’'t create thread
err = pthread create(&tid2, NULL,
if (err != 0)

err _quit("can’t create thread
err = pthread join(tidl, &tret);

(char *)arg);

"thread 1 first handler");
"thread 1 second handler");
printf ("thread 1 push complete\n");

7

"thread 2 first handler");
"thread 2 second handler");

’

thr_fnl, (void *)1);
1: %$s\n", strerror(err));
thr fn2, (void *)1);
2: %s\n", strerror(err));

Section 11.5 Thread Termination 367

if (err != 0)

err quit("can‘t join with thread 1: %s\n", strerror(errx)) ;
printf ("thread 1 exit code $d\n", (int)tret);
err = pthread join(tid2, &tret);
if (err t!= 0)

err quit("can’t join with thread 2: %s\n", strerror{err));
printf ("thread 2 exit code %d\n", (int)tret);
exit (0);

Figure 11.5 Thread cleanup handler

Running the program in Figure 11.5 gives us

$./a.out

thread 1 start

thread 1 push complete

thread 2 start

thread 2 push complete

cleanup: thread 2 second handler
cleanup: thread 2 first handler
thread 1 exit code 1

thread 2 exit code 2

From the output, we can see that both threads start properly and exit, but that only the
second thread’s cleanup handlers are called. Thus, if the thread terminates by returning
from its start routine, its cleanup handlers are not called. Also note that the cleanup
handlers are called in the reverse order from which they were installed. m]

By now, you should begin to see similarities between the thread functions and the
process functions. Figure 11.6 summarizes the similar functions.

Process primitive Thread primitive Description

fork pthread create create a new flow of control

exit pthread exit exit from an existing flow of control

waitpid pthread_join get exit status from flow of control

atexit pthread_cancel_push 1?g$knfuncﬁontobecaﬂedatent&0n1ﬂ0w<ﬁconnd
getpid pthread_self get ID for flow of control

abort pthread_cancel request abnormal termination of flow of control]

Figure 11.6 Comparison of process and thread primitives

By default, a thread’s termination status is retained until pthread_join is called
for that thread. A thread’s underlying storage can be reclaimed immediately on
termination if that thread has been detached. When a thread is detached, the
pthread join function can’t be used to wait for its termination status. A call to
pthread join for a detached thread will fail, returning EINVAL. We can detach a
thread by calling pthread_detach.

368 Threads Chapter 11
’ #include <pthread.h>
!‘ int pthread_detach(pthread t tid);
" Returns: 0 if OK, error number on failure
As we will see in the next chapter, we can create a thread that is already in the detached
state by modifying the thread attributes we pass to pthread create.

11.6 Thread Synchronization

When multiple threads of control share the same memory, we need to make sure that
each thread sees a consistent view of its data. If each thread uses variables that other
threads don’t read or modify, no consistency problems exist. Similarly, if a variable is
read-only, there is no consistency problem with more than one thread reading its value
at the same time. However, when one thread can modify a variable that other threads

- can read or modify, we need to synchronize the threads to ensure that they don’t use an

invalid value when accessing the variable’s memory contents.

When one thread modifies a variable, other threads can potentially see
inconsistencies when reading the value of the variable. On processor architectures in
which the modification takes more than one memory cycle, this can happen when the
memory read is interleaved between the memory write cycles. Of course, this behavior
is architecture dependent, but portable programs can’t make any assumptions about
what type of processor architecture is being used.

Figure 11.7 shows a hypothetical example of two threads reading and writing the
same variable. In this example, thread A reads the variable and then writes a new value
to it, but the write operation takes two memory cycles. If thread B reads the same
variable between the two write cycles, it will see an inconsistent value.

Thread A Thread B
read
write
time 1
read
] write2

Figure 11.7 Interleaved memory cycles with two threads

To solve this problem, the threads have to use a lock that will allow only one thread
to access the variable at a time. Figure 11.8 shows this synchronization. If it wants to

Section 11.6 Thread Synchronization 369

read the variable, thread B acquires a lock. Similarly, when thread A updates the
variable, it acquires the same lock. Thus, thread B will be unable to read the variable
until thread A releases the lock.

:F_hread A Thread B
read
-
read
write1
time
‘ write,

E(_:ad

Figure 11.8 Two threads synchronizing memory access

(A

You also need to synchronize two or more threads that might try to modify the
same variable at the same time. Consider the case in which you increment a variable
(Figure 11.9). The increment operation is usually broken down into three steps.

1. Read the memory location into a register.
2. Increment the value in the register.

3. Write the new value back to the memory location.

If two threads try to increment the same variable at almost the same time without
synchronizing with each other, the results can be inconsistent. You end up with a value
that is either one or two greater than before, depending on the value observed when the
second thread starts its operation. If the second thread performs step 1 before the first
thread performs step 3, the second thread will read the same initial value as the first
thread, increment it, and write it back, with no net effect.

If the modification is atomic, then there isn’t a race. In the previous example, if the
increment takes only one memory cycle, then no race exists. If our data always appears
to be sequentially consistent, then we need no additional synchronization. Our
operations are sequentially consistent when multiple threads can’t observe
inconsistencies in our data. In modern computer systems, memory accesses take
multiple bus cycles, and multiprocessors generally interleave bus cycles among
multiple processors, so we aren’t guaranteed that our data is sequentially consistent.

370 Threads Chapter 11
Thread A Thread B Contents of i
fetch i into register 5
(register=5)
increment the
contents of fetch i into register
) : 5
the register (register=5)
(register=6)
time
store the contents increment the
of the register contents of 6
into i the register
(register=6) (register=6)
store the contents
Y of the register 6
into i
(register=6)
Figure 1.9 Two unsynchronized threads incrementing the same variable

In a sequentially consistent environment, we can explain modifications to our data
as a sequential step of operations taken by the running threads. We can say such things
as “Thread A incremented the variable, then thread B incremented the variable, so its
value is two greater than before” or “Thread B incremented the variable, then thread A
incremented the variable, so its value is two greater than before.” No possible ordering
of the two threads can result in any other value of the variable.

Besides the computer architecture, races can arise from the ways in which our
programs use variables, creating places where it is possible to view inconsistencies. For
example, we might increment a variable and then make a decision based on its value.
The combination of the increment step and the decision-making step aren’t atomic, so
this opens a window where inconsistencies can arise.

Mutexes

We can protect our data and ensure access by only one thread at a time by using the
pthreads mutual-exclusion interfaces. A mutex is basically a lock that we set (lock)
before accessing a shared resource and release (unlock) when we're done. While it is
set, any other thread that tries to set it will block until we release it. If more than one
thread is blocked when we unlock the mutex, then all threads blocked on the lock will
be made runnable, and the first one to run will be able to set the lock. The others will

Section 11.6 Thread Synchronization 371

see that the mutex is still locked and go back to waiting for it to become available again.
In this way, only one thread will proceed at a time.

This mutual-exclusion mechanism works only if we design our threads to follow
the same data-access rules. The operating system doesn'’t serialize access to data for us.
If we allow one thread to access a shared resource without first acquiring a lock, then
inconsistencies can occur even though the rest of our threads do acquire the lock before
attempting to access the shared resource.

A mutex variable is represented by the pthread mutex_t data type. Before we
can use a mutex variable, we must first initialize it by either setting it to the constant
PTHREAD MUTEX INITIALIZER (for statically-allocated mutexes only) or calling
pthread mutex_init. If we allocate the mutex dynamically (by calling malloc, for
example), then we need to call pthread mutex_destroy before freeing the memory.

#include <pthread.h> ~

int pthread mutex init (pthread mutex_t *restrict mutex,
const pthread mutexattr_ t *restrict attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex) ;

Both return: 0 if OK, error number on failure J

To initialize a mutex with the default attributes, we set attr to NULL. We will discuss
nondefault mutex attributes in Section 12.4.

To lock a mutex, we call pthread mutex_lock. If the mutex is already locked,
the calling thread will block until the mutex is unlocked. To unlock a mutex, we call
pthread_mutex_unlock. '

#include <pthread.h>
int pthread_mutex_lock (pthread mutex_t *mutex) ;
int pthread_mutex_trylock(pthread_mutex—t *mutex) ;

int pthread mutex_unlock (pthread mutex_t *mutex) ;

All return: 0 if OK, error number on failure

If a thread can’t afford to block, it can use pthread mutex_t rylock to lock the
mutex conditionally. If the mutex is unlocked at the time pthread_mutex_trylock
is called, then pthread_mutex_trylock will lock the mutex without blocking and
return 0. Otherwise, pthread mutex_trylock will fail, returning EBUSY without
locking the mutex.

Example

Figure 11.10 illustrates a mutex used to protect a data structure. When more than one
thread needs to access a dynamically-allocated object, we can embed a reference count
in the object to ensure that we don’t free its memory before all threads are done using it.

372 Threads Chapter 11

#include <stdlib.h>
#include <pthread.h>

struct foo {

int f count;
pthread mutex_t f_lock;
/* ... more stuff here ... */

}i

struct foo *
foo_alloc(void) /* allocate the object */

{

struct foo *fp;

if ((fp = malloc(sizeof (struct foo))) != NULL) {
fp->f count = 1;
if (pthread mutex_init (&fp->f lock, NULL) != 0) {
free (fp);

return (NULL) ;

}

/* ... continue initialization ... */

}

return(fp) ;

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{

pthread_mutex lock (&fp->f lock) ;

fp->f_count++;

pthread mutex_unlock (&fp->f lock) ;

}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{
pthread mutex_lock (&fp->f lock) ;
if (--fp->f_count == 0) { /* last reference */
pthread_ mutex_unlock (&fp->f lock) ;
pthread mutex_destroy (&fp->f_lock) ;
free (fp) ;
} else {
pthread mutex unlock (&fp->f lock);
}

Figure 11.10 Using a mutex to protect a data structure

We lock the mutex before incrementing the reference count, decrementing the
reference count, and checking whether the reference count reaches zero. No locking is
necessary when we- initialize the reference count to 1 in the foo_alloc function,

Section 11.6 Thread Synchronization 373

because the allocating thread is the only reference to it so far. If we were to place the
structure on a list at this point, it could be found by other threads, so we would need to
lock it first.

Before using the object, threads are expected to add a reference count to it. When
they are done, they must release the reference. When the last reference is released, the
object’s memory is freed. 0

Deadlock Avoidance

A thread will deadlock itself if it tries to lock the same mutex twice, but there are less
obvious ways to create deadlocks with mutexes. For example, when we use more than
one mutex in our programs, a deadlock can occur if we allow one thread to hold a
mutex and block while trying to lock a second mutex at the same time that another
thread holding the second mutex tries to lock the first mutex. Neither thread can
proceed, because each needs a resource that is held by the other, so we have a deadlock.

Deadlocks can be avoided by carefully controlling the order in which mutexes are
locked. For example, assume that you have two mutexes, A and B, that you need to
lock at the same time. If all threads always lock mutex A before mutex B, no deadlock
can occur from the use of the two mutexes (but you can still deadlock on other
resources). Similarly, if all threads always lock mutex B before mutex A, no deadlock
will occur. You'll have the potential for a deadlock only when one thread attempts to
lock the mutexes in the opposite order from another thread.

Sometimes, an application’s architecture makes it difficult to apply a lock ordering.
If enough locks and data structures are involved that the functions you have available
can’t be molded to fit a simple hierarchy, then you'll have to try some other approach.
In this case, you might be able to release your locks and try again at a later time. You
can use the pthread_mutex_trylock interface to avoid deadlocking in this case. If
you are already holding locks and pthread mutex_trylock is successful, then you
can proceed. If it can’t acquire the lock, however, you can release the locks you already
hold, clean up, and try again later.

Example

In this example, we update Figure 11.10 to show the use of two mutexes. We avoid
deadlocks by ensuring that when we need to acquire two mutexes at the same time, we
always lock them in the same order. The second mutex protects a hash list that we use
to keep track of the foo data structures. Thus, the hashlock mutex protects both the
£h hash table and the £ _next hash link field in the foo structure. The £_lock mutex
in the foo structure protects access to the remainder of the foo structure’s fields.

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(fp) (((unsigned long) fp) $NHASH)

374

Threads

Chapter 11

struct foo *fh[NHASH] ;
pthread mutex_t hashlock = PTHREAD MUTEX INITIALIZER;

struct foo {

int f _count;
pthread_mutex_t f lock;

struct foo *f next; /* protected by hashlock */
int f id;

/* ... more stuff here ... */

}i

struct foo *
foo_alloc(void) /* allocate the object */

{

struct foo *fp;

int idx;
if ((fp = malloc(sizeof (struct foo))) != NULL)
fp->f count = 1;
if (pthread mutex_init (&fp->f lock, NULL) != 0) {
free(fp) ; ‘

return (NULL) ;

}

idx = HASH(fp) ;

pthread mutex_lock (&hashlock) ;

fp->f next = fhlidx];

fh{idx] = fp->f_next;

pthread_mutex lock(&fp->f_ lock) ;
pthread_mutex_unlock (&hashlock) ;

/* ... continue initialization ... */
" pthread mutex_unlock (&fp->f lock) ;

}

return(fp) ;

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{

pthread_mutex_ lock (&fp->f lock) ;

fp->f_ count++;

pthread_mutex unlock (&fp->f_ lock) ;

}

struct foo *
foo_find(int id) /* find an existing object */
{

struct foo *fp;

int idx;

idx = HASH(fp);

Section 11.6

Thread Synchronization

375

}

pthread mutex_lock (&hashlock) ; .
for (fp = fhlidx]; fp != NULL; fp = fp->f_next) {
if (fp->f_id == id) {
foo_hold(fp);
break;
}
}
pthread mutex_unlock (&hashlock) ;
return (fp);

void
foo rele(struct foo *fp) /* release a reference to the object */

{

struct foo *tfp;
int idx;

pthread_mutex_lock(&fp—>f_1ock);
if (fp->f count == 1) { /* last reference */
pthread_mutex_unlock(&fp—>f_lock);
pthread_mutex_lock (&hashlock) ;
pthread mutex_lock (&fp->f_lock);
/* need to recheck the condition */
if (fp->f count != 1) {
fp->f count--;
pthread_mutex_unlock (&fp->f_lock);
pthread_mutex_unlock(&hashlock);
return;
}
/* remove from list */
idx = HASH(fp);
tfp = fhiidx];
if (tfp == fp) {
fhiidx] = fp->f next;
} else {
while (tfp->f next != fp)
tfp = tfp->f next;
tfp->f next = fp->f next;
}
pthread mutex_unlock (&hashlock) ;
pthread_mutex_unlock(&fp—>f_10ck);
pthread_mutex_destroy(&fp->f_10ck);
free(fp); :
} else {
fp->f_count--;
pthread_mutex_unlock(&fp—>f_1ock);

Figure 11.11 Using two mutexes

376 Threads Chapter 11

Comparing Figure 11.11 with Figure 11.10, we see that our allocation function now
locks the hash list lock, adds the new structure to a hash bucket, and before unlocking
the hash list lock, locks the mutex in the new structure. Since the new structure is
placed on a global list, other threads can find it, so we need to block them if they try to
access the new structure, until we are done initializing it.

The foo_find function locks the hash list lock and searches for the requested
structure. If it is found, we increase the reference count and return a pointer to the
structure. Note that we honor the lock ordering by locking the hash list lock in
foo_find before foo_hold locks the foo structure’s f1ock mutex.

Now with two locks, the foo_rele function is more complicated. If this is the last
reference, we need to unlock the structure mutex so that we can acquire the hash list
lock, since we’ll need to remove the structure from the hash list. Then we reacquire the
structure mutex. Because we could have blocked since the last time we held the
structure mutex, we need to recheck the condition to see whether we still need to free
the structure. If another thread found the structure and added a reference to it while we
blocked to honor the lock ordering, we simply need to decrement the reference count,
unlock everything, and return.

This locking is complex, so we need to revisit our design. We can simplify things
considerably by using the hash list lock to protect the structure reference count, too.
The structure mutex can be used to protect everything else in the foo structure.
Figure 11.12 reflects this change.

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(fp) (((unsigned long)fp) $NHASH)

struct foo *fh[NHASH] ;
pthread_mutex_t hashlock = PTHREAD MUTEX INITIALIZER;

struct foo {

int f_count; /* protected by hashlock */
pthread mutex t f lock;

struct foo *f_next; /* protected by hashlock */
int f_id;

/* ... more stuff here ... ¥/

}i

struct foo *
foo_alloc(void) /* allocate the object */

{
struct foo *fp;
int idx;
if ((fp = malloc(sizeof (struct foo))) != NULL) {
fp->f count = 1;
if (pthread mutex init (&fp->f_lock, NULL) != 0) {

free (fp);

